

TENTATIVE MAP DRAINAGE STUDY For OTAY RANCH PORTION OF VILLAGE 4

City of Chula Vista, California

Prepared for:
Otay Valley Quarry, LLC
A Delaware Limited Liability
6591 Collins Drive, Suite E11
Moorpark, CA 93021

W.O. 3206-0001

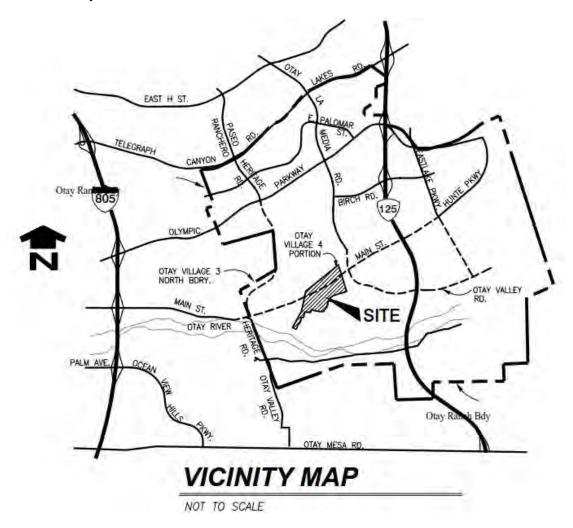
August 3, 2016

Hunsaker & Associates San Diego, Inc.

Alisa S. Vialpando, R.C.E. 47945

Principal

TABLE OF CONTENTS


		Page
Chapter 1	- Executive Summary	
1.5	Summary of Pre-Development Conditions Summary of Developed Conditions Results & Recommendations References	1 3 3 5 7
Chapter 2	2 - Methodology & Model Development	
	Design Rainfall Determination Runoff Coefficient Determination	
Chapter 3	3 - Hydrologic Analysis	
3.1 3.2 3.3 3.4	50-Year Developed Condition AES Model Output 100-Year Existing Condition AES Model Output	
Chapter 4	- Detention Basin Analysis	
Chapter 5	5 – Hydrology Exhibits/Maps	
De	veloped Condition Hydrology Map (Exhibit 2) Ma	ap Pocket 1 ap Pocket 2 ap Pocket 3

CHAPTER 1 - EXECUTIVE SUMMARY

1.1 Introduction

This drainage study has been prepared to assess the pre-developed and post-developed condition peak runoff rates from the proposed Otay Ranch Village 4 development for Otay Valley Quarry, LLC.

The project site is located north of the Otay River, south of Wolf Canyon, west of Village 8 West, and east of the future Village 3 within the City of Chula Vista, California. See Vicinity Map below. The project will include the western extension of Main Street between Village 8 West and the future Main Street bridge crossing over Wolf Canyon. The development will predominately consist of single and multi- family residential dwelling units with associated streets and utility infrastructure.

The gross project area is approximately 166 acres including all residential areas as well as Open Space/ Preserve and circulation areas. Due to the imperviousness increase associated with the development, it is anticipated that peak flows generated from the site will increase runoff downstream unless measures are made to mitigate the peak flows. These

increases will need to be considered in the projects design and addressed in this study. In addition, the proposed basin will also serve as a water quality and flow control (hydromodification) treatment facility for the developed portions of the site. All impervious areas constructed throughout the site will need to route their 85th percentile runoff through the 'water quality' basin. The proposed basin location is south of Main Street at the western edge of the development.

In Existing condition, the Village 4 South site generally flows in a northwesterly direction towards a tributary of Wolf Canyon at which time runoff will then travel west then south towards the Otay River. Development of the site will cut portions of land located at the higher elevations. Runoff will be collected within the proposed storm drain system which will eventually outlet into Wolf Canyon. Per the Flood Insurance Rate Map No. 06073C2178, the site lies outside the FEMA floodplain boundary. Therefore, a Letter of Map Revision is not required. See Exhibit 3 for an overlay of the site on Flood Insurance Rate Map which also includes the Savage Dam inundation flood line.

The MSCP Open Space Preserve is located along the site northern and western boundaries. With exceptions relative to sewer line and storm drain routing, the development of Otay Ranch Village 4 South, as proposed in the TM, will not encroach into the MSCP area and will have an assigned easement through the preserve. Since this project is located adjacent to a Preserve area, it will adhere to Section 7.5.2 of the City's MSCP Subarea Adjacency Guidelines pertaining to drainage and water quality.

Per the City of Chula Vista drainage criteria, the Modified Rational Method should be used to determine peak design flow rates when the contributing drainage area is less than 1.0-square mile. Since the total watershed area discharging from the Otay Ranch Village 3 site is less than 1.0-square mile, the AES-2010 computer software was used to model the runoff response per the Modified Rational Method.

Methodology used for the computation of design rainfall events, runoff coefficients, and rainfall intensity values are consistent with criteria set forth in the most current "San Diego County Hydrology Manual" and the "City of Chula Vista Subdivision Manual". A detailed explanation of methodology and model development used for this analysis is listed in Chapter 2 of this report.

1.2 Summary of Pre-Developed Conditions

The topography for existing Village 4 South site is such that its runoff drains in a northwesterly direction towards a tributary of Wolf Canyon and subsequently to Wolf Canyon and the Otay River. The watershed which drains through the site has an elevation high point of about 650 ft. MSL. Several finger canyons subdivide the drainage areas but not in any significant hydrologic manner. Refer to Exhibit 1, Existing Hydrology Map in Chapter 4 for watershed boundary associated with the project area. The watershed area delineated on the map was determined as a means of equally comparing the impact of the proposed development with its comparable existing condition at a point immediately downstream of the proposed site at Wolf Canyon.

Table 1 below summarizes the 50 and 100-year pre-development peak flows from the site in existing condition. A runoff coefficient of 0.60 was used for the existing tributary areas per the City of Chula Vista Subdivision Manual. These coefficients correspond to vegetated steep slopes.

TABLE 1 - Summary of Pre-Developed Flows to the Wolf Canyon

Discharge Location	Drainage Area (ac)	50-Year Peak Flow (cfs)	100-Year Peak Flow (cfs)	
Wolf Canyon	201.4	266.21	295.29	

Supporting calculations for the data presented in Table 1 are located in Chapter 3 of this report. The corresponding hydrology map is Exhibit 1 in Chapter 5.

1.3 Summary of Developed Conditions

The Otay Ranch Village 3 Tentative Map will consist of single and multi-family residential dwelling units, roads for circulation, and open space areas. The extension of Main Street west from the Village 8 West project boundary is also included with this development as well as offsite sewer lines and stormwater facilities. The proposed 'water quality/HMP' basin will be located on the south side of Main Street and west of the developed portions of Village 4 South.

The extension of Main Street will be approximately 3,700 linear feet from the eastern boundary of the site where it connects to Village 8 West. Runoff from Village 8 West does not drain onto Village 4 South. Instead, inlets within Village 8 West collect and direct runoff north towards a proposed water treatment basin before discharging into the Wolf Canyon tributary located immediately north of Village 4 South. See Exhibit 2, Proposed Condition Hydrology Map in Chapter 4. Water Quality and flow control (HMP) treatment of onsite Main Street runoff will be performed with the Village 4 South basin. For water quality and hydromodification discussion and calculations, please reference the *Priority Development Project (PDP) Storm Water Quality Management Plan (SWQMP) for Otay Ranch Portion of*

Village 4 Tentative Map dated August 2016 prepared by Hunsaker & Associates San Diego Inc.

In general, runoff from the developed site will drain north towards Main Street. Inlets placed throughout the site will collect the runoff and the storm drain will convey it towards the Main Street storm drain system. This storm drain system will convey flows west and then south before it reaches the future location of the proposed bridge abutment. It will outlet into the proposed basin located south of Main Street. The basin will consist of a riser with a rim height set to allow required ponding of the 'water quality' treatment design volume per the requirements set forth by the SDRWQCB Order R9-2013-0001. The basin's base will consist of 18" of engineered fill, 24" of gravel, and a perforated subdrain.

Table 2 below summarizes the 50 and 100-year developed condition peak flows at the location of the Wolf Canyon discharge including the effect of detention from the proposed basin. The discharge point at Wolf Canyon is shown on Exhibit 2 in Chapter 5. Runoff coefficients assumed for the proposed roads, multi-family development and single family development are per the City of Chula Vista Subdivision Manual.

TABLE 2 - Summary of Developed Flows to Otay River

Discharge Location	Drainage Area (ac)	50-Year Peak Flow (cfs)	100-Year Peak Flow (cfs) 292.50			
Wolf Canyon	203.09	259.32	292.50			

Supporting calculations for the information presented in Table 2 is located in Chapter 3 and 4 of this report. The corresponding hydrology map is Exhibit 2 in Chapter 5.

The storm drain outlet into the Wolf Canyon will require the design of an appropriate outlet structure to dissipate flow velocities. The outlet structure selected will reduce velocities downstream so as to not create an erosive situation. Options available include, but are not limited to, APWA energy dissipating impact basins, (SDRSD) D-41 Concrete Energy Dissipators, and rip rap energy dissipation.

Landform grading has been incorporated to mimic existing conditions where the proposed grading ties into or daylights with the existing terrain. It is intended that the stormwater from the manufactured slopes will sheet flow and follow the existing drainage patterns.

1.4 Results & Recommendations

Table 3 summarizes the effects of site development at the receiving Otay River.

TABLE 3 - Summary of Pre vs. Post-Developed Flows from Village 4 South

	PRE-DE	VELOPED	POST-DE	VELOPED	DIFFERENCE		
Discharge Location	Drainage Area (ac)	100-Year Peak Flow (cfs)	Drainage Area (ac)	100-Year Peak Flow (cfs)	Area (ac)	100-Year Peak Flow (cfs)	
Wolf Canyon	201.4	295.29	203.09	292.50	+1.69*	-2.79	

^{*-}Increase in area is due to the basin area which was not included in the Existing Condition.

Development of Otay Ranch Village 4 South TM results in the net decrease of runoff discharged to Wolf Canyon of approximately 2.79 cfs when considering the effect of the proposed detention basin.

A comparison of the existing and proposed condition maps illustrates that there are finger canyons along the northern side of the site which show an area reduction, and thus flow reduction compared to the existing condition. Therefore, the potential for erosion has been greatly reduced immediately downstream of these finger canyons. Since the flows have been reduced for these subareas, existing flow velocities should not be exceeded once the site has been developed. Therefore, erosion is not expected at the downstream points of these subareas.

Erosion Control: The developer shall monitor any erosion at the project's outfall at Wolf Canyon and, prior to the last building permit for the project, obtain approval for and complete any reconstructive work necessary to eliminate any existing erosion and prevent future erosion from occurring, all to the satisfaction of the Development Services Director.

Scour Analysis: Concurrent with all grading plan submittals, the applicant shall prepare a scour analysis for all structures within the 100-year flood hazard area. Additionally, all said structures shall be monitored until the last building permit for the project has been issued.

Summary:

- Drainage facilities within Village 4 South will be designed in accordance with the requirements of the Chula Vista Subdivision Manual, the San Diego County Hydrology Manual and the requirements of the San Diego Regional Water Quality Control Board.
- Development of the project site will not further degrade potential beneficial uses of downstream water bodies as designated by the Regional Water Quality Control Board, including water bodies listed on the Clean Water Section 303d list.
- Onsite and offsite drainage easements shall be provided to the satisfaction of the Director of Public Works.

References

- City of Chula Vista Subdivision Manual; Engineering Department and Land Development; Section 3-200, March 13, 2012
- San Diego County Hydrology Manual; County of San Diego Department of Public Works Flood Control Division, June 2003
- Hydromodification Management Plan prepared for County of San Diego, California, March 2011
- Priority Development Project (PDP) Storm Water Quality Management Plan (SWQMP) for Otay Ranch Portion of Village 4 Tentative Map prepared by Hunsaker and Associates, San Diego Inc., August 2016.
- "Order No. R9-2013-0001, NPDES No. CAS0109266 Waste Discharge Requirements for Discharges of Urban Runoff from the Municipal Separate Storm Sewer Systems (MS4s) Draining the Watersheds of the County of San Diego, the Incorporated Cities of San Diego County, San Diego Unified Port District and the San Diego County Regional Airport Authority", California Regional Water Quality Control Board San Diego Region.

CHAPTER 2 - METHODOLOGY

2.1 - Rational Method Model Development Summary

Computer Software Package – AES-2015

Design Storm – 50 for storm drain and 100-Year for detention and sump inlets

Land Use - Multi Family, Single Family, and Open Space

Soil Type - Hydrologic soil group D was assumed for all areas. Group D soils have very slow infiltration rates when thoroughly wetted. Consisting chiefly of clay soils with a high swelling potential, soils with a high permanent water table, soils with clay pan or clay layer at or near the surface, and shallow soils over nearly impervious materials, Group D soils have a very slow rate of water transmission.

Runoff Coefficient – In accordance with the City of Chula Vista Subdivision Manual, a runoff coefficient of 0.90 was used for <u>fully</u> paved areas, 0.75 for the Multi-Family Sites and dense residential, 0.65 for the Single-Family pads, 0.35 for proposed open space, and 0.30 for parks.

Method of Analysis – The Rational Method is the most widely used hydrologic model for estimating peak runoff rates. Applied to small urban and semi-urban areas with drainage areas less than 1.0 square mile, the Rational Method relates storm rainfall intensity, a runoff coefficient, and drainage area to peak runoff rate. This relationship is expressed by the equation:

- Q = CIA, where:
- Q = The peak runoff rate in cubic feet per second at the point of analysis.
- C = A runoff coefficient representing the area averaged ratio of runoff to rainfall intensity.
- I = The time-averaged rainfall intensity in inches per hour corresponding to the time of concentration.
- A = The drainage basin area in acres.

To perform a node-link study, the total watershed area is divided into subareas which discharge at designated nodes.

The procedure for the subarea summation model is as follows:

- (1) Subdivide the watershed into an initial subarea (generally 1 lot) and subsequent subareas, which are generally less than 10 acres in size. Assign upstream and downstream node numbers to each subarea.
- (2) Estimate an initial T_c by using the appropriate nomograph or overland flow velocity estimation.
- Using the initial T_c , determine the corresponding values of I. Then Q = C I A.
- (4) Using Q, estimate the travel time between this node and the next by Manning's equation as applied to the particular channel or conduit linking the two nodes. Then, repeat the calculation for Q based on the revised intensity (which is a function of the revised time of concentration)

The nodes are joined together by links, which may be street gutter flows, drainage swales, drainage ditches, pipe flow, or various channel flows. The AES-2010 computer subarea menu is as follows:

SUBAREA HYDROLOGIC PROCESS

- 1. Confluence analysis at node.
- 2. Initial subarea analysis (including time of concentration calculation).
- 3. Pipeflow travel time (computer estimated).
- 4. Pipeflow travel time (user specified).
- 5. Trapezoidal channel travel time.
- 6. Street flow analysis through subarea.
- 7. User specified information at node.
- 8. Addition of subarea runoff to main line.
- 9. V-gutter flow through area.
- 10. Copy main stream data to memory bank
- 11. Confluence main stream data with a memory bank
- 12. Clear a memory bank

At the confluence point of two or more basins, the following procedure is used to combine peak flow rates to account for differences in the basin's times of concentration. This adjustment is based on the assumption that each basin's hydrographs are triangular in shape.

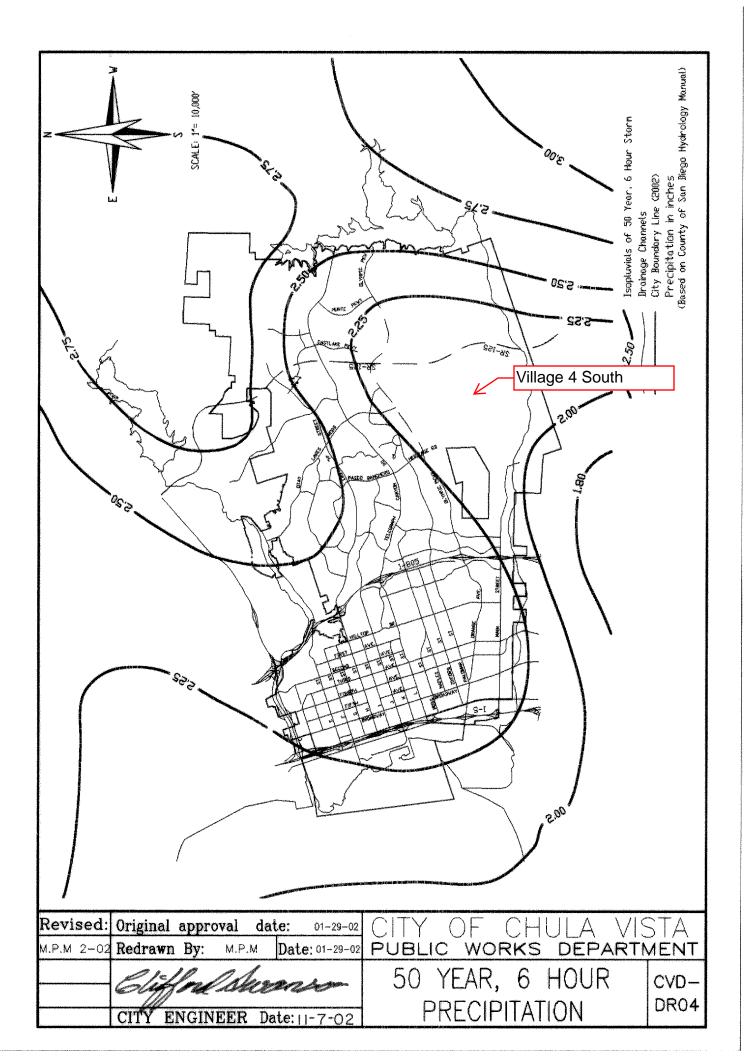
(1). If the collection streams have the same times of concentration, then the Q values are directly summed,

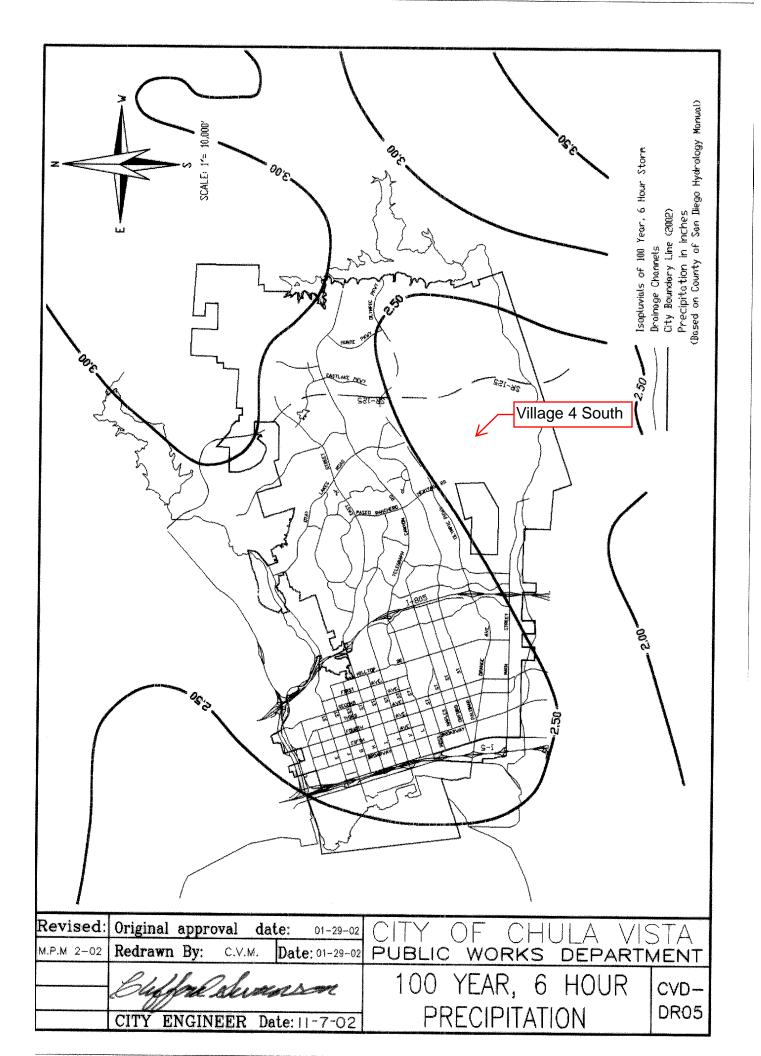
$$Q_p = Q_a + Q_b; T_p = T_a = T_b$$

- (2). If the collection streams have different times of concentration, the smaller of the tributary Q values may be adjusted as follows:
 - (i). The most frequent case is where the collection stream with the longer time of concentration has the larger Q. The smaller Q value is adjusted by the ratio of rainfall intensities.

$$Q_p = Q_a + Q_b \ (I_a/I_b); \ T_p = T_a$$

(ii). In some cases, the collection stream with the shorter time of concentration has the larger Q. Then the smaller Q is adjusted by a ratio of the T values.


$$Q_p = Q_b + Q_a (T_b/T_a); T_p = T_b$$


CHAPTER 2

METHODOLOGY & MODEL DEVELOPMENT

2.2 - Design Rainfall Determination

50-Year, 6-Hour and 100-Year, 6-Hour Rainfall Isopluvial Maps from City of Chula Vista Design Standards – CVDS Storm Drain Design

CHAPTER 2 METHODOLOGY & MODEL DEVELOPMENT

2.3 - Runoff Coefficient Determination

3-203.3 Rational and Modified Rational Methods

The rational method equation relates storm rainfall intensity (I), a selected runoff coefficient (C) and drainage area (A) to the peak runoff rate (Q):

Q = CIA (Empirical Units)

where:

Q = Peak runoff in cubic feet per second

C = Runoff coefficient

I = Intensity, inches per hours A = Drainage basin area in acres

Or

Q=0.278CIA (Metric Units)

where:

Q = Peak runoff in cubic meters per second

C = Runoff coefficient

I = Intensity in millimeters per second A = Drainage area in square kilometers

Coefficient of Runoff: Consider probable development. Use highest number of the following values:

a)	Paved Surface	0.90
b)	Commercial Area	0.85
c)	Dense Residential (R2, R3)	0.75
d)	Normal Residential (R1)	0.65
e)	Suburban Property (RE)	0.55
f)	Barren Slopes Steep	0.80
g)	Barren Slopes Hilly	0.75
h)	" " Rolling	0.70
i)	" " Flat	0.65
j)	Vegetated Slopes Steep	0.60
k)	" " Hilly	0.55
1)	" " Rolling	0.50
m)	" " Flat	0.45
n)	Farm Land	0.35
0)	Parks, Golf Courses	0.30

NOTES: Steep = Steep, rugged terrain with average slopes generally above

Hilly = Hilly terrain with average slopes of 10% to 30%. Rolling = Rolling terrain with average slopes of 5% to 10%. Flat = Relatively flat land, with average slopes of 0% to 5%. Composite = Where drainage areas are composed of parts having different runoff characteristics, a weighted coefficient for

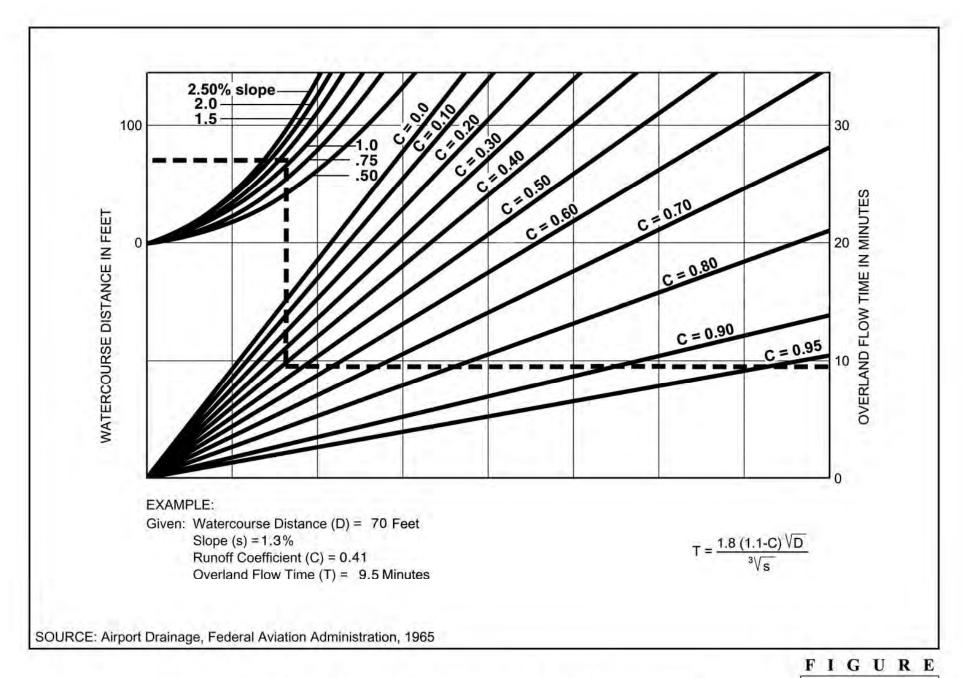
the total drainage area may be used.

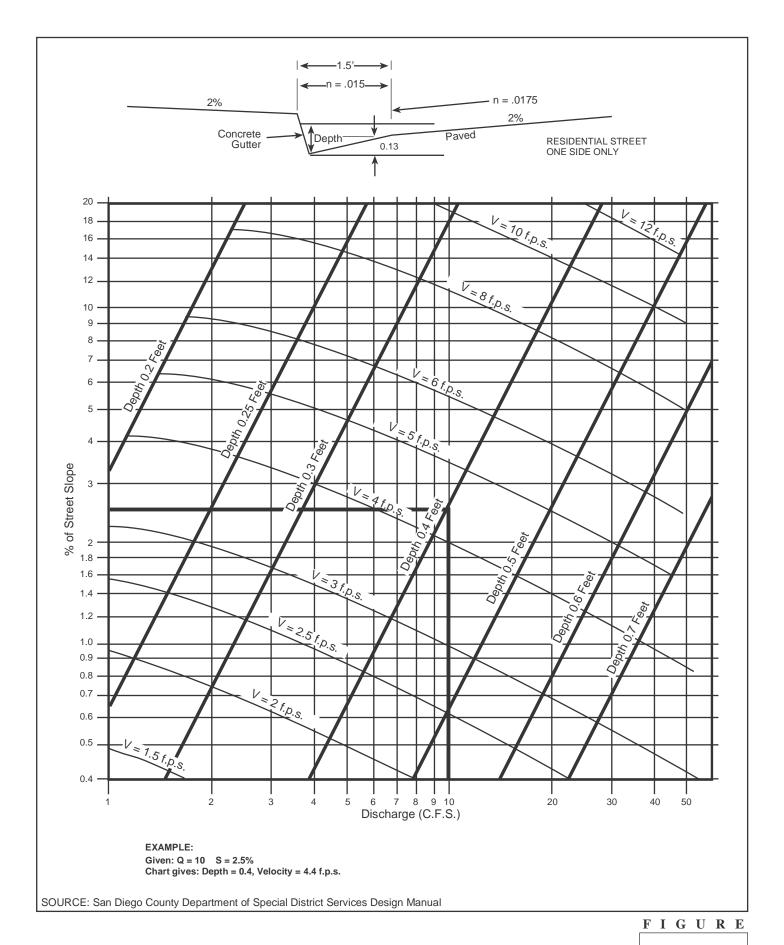
CHAPTER 2

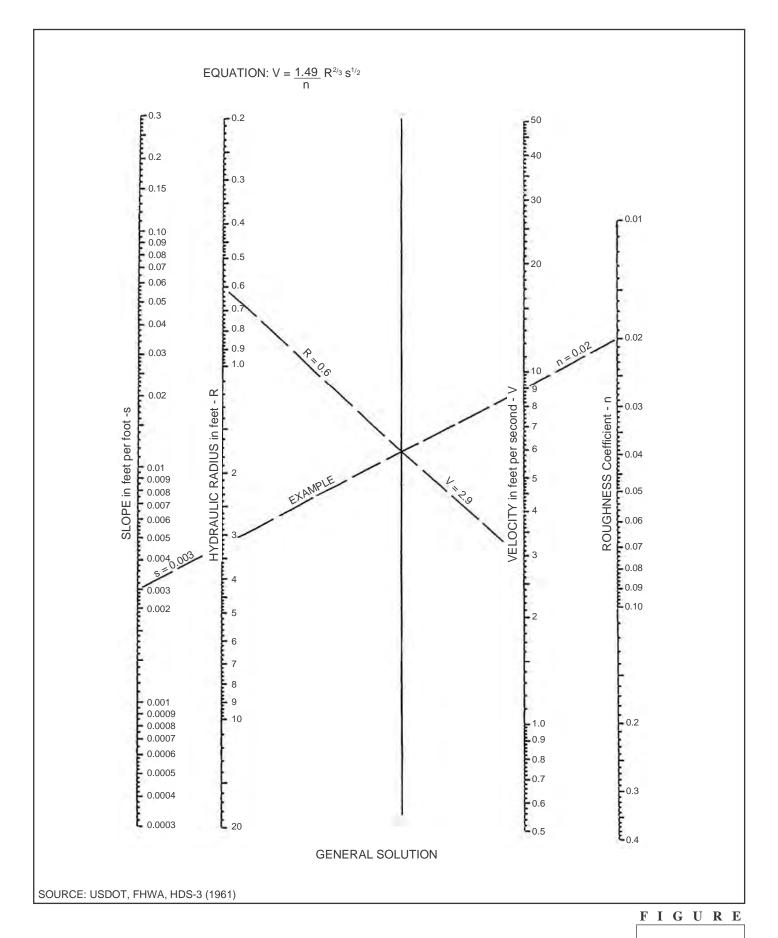
METHODOLOGY & MODEL DEVELOPMENT

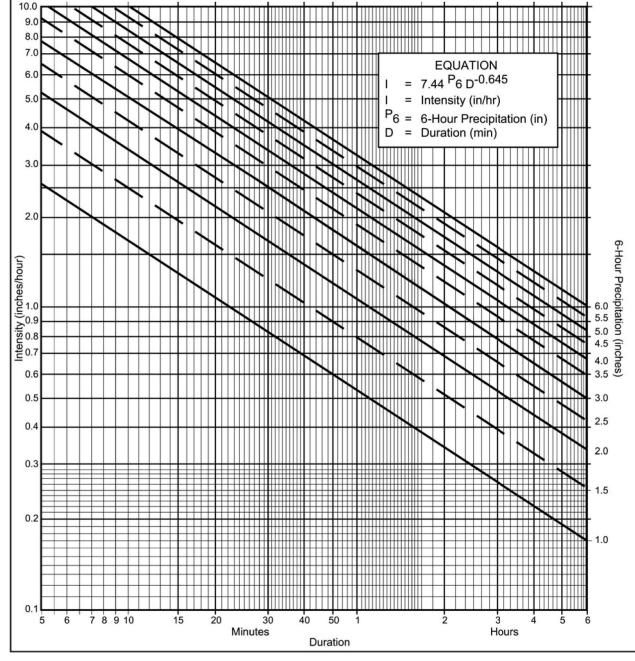
- 2.4 Rainfall Intensity Determination
- -Maximum Overland Flow Length & Initial Time of Concentration
 - -Urban Watershed Overland Time of Flow Nomograph
 - -Gutter & Roadway Discharge-Velocity Chart
 - Manning's Equation Nomograph
 - -Intensity-Duration Design Chart

San Diego County Hydrology Manual	Section:	3
Date: June 2003	Page:	12 of 26


Note that the Initial Time of Concentration should be reflective of the general land-use at the upstream end of a drainage basin. A single lot with an area of two or less acres does not have a significant effect where the drainage basin area is 20 to 600 acres.


Table 3-2 provides limits of the length (Maximum Length (L_M)) of sheet flow to be used in hydrology studies. Initial T_i values based on average C values for the Land Use Element are also included. These values can be used in planning and design applications as described below. Exceptions may be approved by the "Regulating Agency" when submitted with a detailed study.


Table 3-2 $\begin{aligned} & \text{MAXIMUM OVERLAND FLOW LENGTH } (L_{\text{M}}) \\ & \text{\& INITIAL TIME OF CONCENTRATION } (T_{\text{i}}) \end{aligned}$


	a milial lime of concentration (i)												
Element*	DU/	.5	5%	1	<u>%</u>	2	%	3	%	59	<u>%</u>	10	%
	Acre	L_{M}	T_{i}	L_{M}	T_{i}	L_{M}	T _i	L_{M}	T _i	L_{M}	Ti	L_{M}	Ti
Natural		50	13.2	70	12.5	85	10.9	100	10.3	100	8.7	100	6.9
LDR	1	50	12.2	70	11.5	85	10.0	100	9.5	100	8.0	100	6.4
LDR	2	50	11.3	70	10.5	85	9.2	100	8.8	100	7.4	100	5.8
LDR	2.9	50	10.7	70	10.0	85	8.8	95	8.1	100	7.0	100	5.6
MDR	4.3	50	10.2	70	9.6	80	8.1	95	7.8	100	6.7	100	5.3
MDR	7.3	50	9.2	65	8.4	80	7.4	95	7.0	100	6.0	100	4.8
MDR	10.9	50	8.7	65	7.9	80	6.9	90	6.4	100	5.7	100	4.5
MDR	14.5	50	8.2	65	7.4	80	6.5	90	6.0	100	5.4	100	4.3
HDR	24	50	6.7	65	6.1	75	5.1	90	4.9	95	4.3	100	3.5
HDR	43	50	5.3	65	4.7	75	4.0	85	3.8	95	3.4	100	2.7
N. Com		50	5.3	60	4.5	75	4.0	85	3.8	95	3.4	100	2.7
G. Com		50	4.7	60	4.1	75	3.6	85	3.4	90	2.9	100	2.4
O.P./Com		50	4.2	60	3.7	70	3.1	80	2.9	90	2.6	100	2.2
Limited I.		50	4.2	60	3.7	70	3.1	80	2.9	90	2.6	100	2.2
General I.		50	3.7	60	3.2	70	2.7	80	2.6	90	2.3	100	1.9

^{*}See Table 3-1 for more detailed description

Directions for Application:

- (1) From precipitation maps determine 6 hr and 24 hr amounts for the selected frequency. These maps are included in the County Hydrology Manual (10, 50, and 100 yr maps included in the Design and Procedure Manual).
- (2) Adjust 6 hr precipitation (if necessary) so that it is within the range of 45% to 65% of the 24 hr precipitation (not applicable to Desert).
- (3) Plot 6 hr precipitation on the right side of the chart.
- (4) Draw a line through the point parallel to the plotted lines.
- (5) This line is the intensity-duration curve for the location being analyzed.

Application Form:

(a) Selected frequency _____ year

(b)
$$P_6 = ____in., P_{24} = _____, \frac{P_6}{P_{24}} = _____%^{(2)}$$

(c) Adjusted P₆⁽²⁾ = _____ in.

(d)
$$t_x = ___ min.$$

Note: This chart replaces the Intensity-Duration-Frequency curves used since 1965.

P6	1	1.5	2	2.5	3	3.5	4	4.5	5	5.5	6
Duration	- 1	1	1	1	- 1	1	- 1	- 1	1	- 1	- 1
5	2.63	3.95	5.27	6.59	7.90	9.22	10.54	11.86	13.17	14.49	15.81
7	2.12	3.18	4.24	5.30	6.36	7.42	8.48	9.54	10.60	11.66	12.72
10	1.68	2.53	3.37	4.21	5.05	5.90	6.74	7.58	8.42	9.27	10.11
15	1.30	1.95	2.59	3.24	3.89	4.54	5.19	5.84	6.49	7.13	7.78
20	1.08	1.62	2.15	2.69	3.23	3.77	4.31	4.85	5.39	5.93	6.46
25	0.93	1.40	1.87	2.33	2.80	3.27	3.73	4.20	4.67	5.13	5.60
30	0.83	1.24	1.66	2.07	2.49	2.90	3.32	3.73	4.15	4.56	4.98
40	0.69	1.03	1.38	1.72	2.07	2.41	2.76	3.10	3.45	3.79	4.13
50	0.60	0.90	1.19	1.49	1.79	2.09	2.39	2.69	2.98	3.28	3.58
60	0.53	0.80	1.06	1.33	1.59	1.86	2.12	2.39	2.65	2.92	3.18
90	0.41	0.61	0.82	1.02	1.23	1.43	1.63	1.84	2.04	2.25	2.45
120	0.34	0.51	0.68	0.85	1.02	1.19	1.36	1.53	1.70	1.87	2.04
150	0.29	0.44	0.59	0.73	0.88	1.03	1.18	1.32	1.47	1.62	1.76
180	0.26	0.39	0.52	0.65	0.78	0.91	1.04	1.18	1.31	1.44	1.57
240	0.22	0.33	0.43	0.54	0.65	0.76	0.87	0.98	1.08	1.19	1.30
300	0.19	0.28	0.38	0.47	0.56	0.66	0.75	0.85	0.94	1.03	1.13
360	0.17	0.25	0.33	0.42	0.50	0.58	0.67	0.75	0.84	0.92	1.00

CHAPTER 3

HYDROLOGIC ANALYSIS

3.1 – 50-Year Existing Condition AES Model Output

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 2003,1985,1981 HYDROLOGY MANUAL

(c) Copyright 1982-2010 Advanced Engineering Software (aes)

Ver. 17.0 Release Date: 07/01/2010 License ID 1239

Analysis prepared by:

Hunsaker & Associates San Diego, Inc. 9707 Waples Street San Diego, CA 92121

```
* Otay Ranch Village 4 South
* 50-year return interval
* DLN: 0924, W.O. 3206-0002
   FILE NAME: R:\0924\HYD\CALCS\AES\EX50.DAT
   TIME/DATE OF STUDY: 15:57 02/26/2015
  USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
   2003 SAN DIEGO MANUAL CRITERIA
   USER SPECIFIED STORM EVENT(YEAR) = 50.00
   6-HOUR DURATION PRECIPITATION (INCHES) =
                                                                               2.130
   SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00
   SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.90
   SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD
   NOTE: USE MODIFIED RATIONAL METHOD PROCEDURES FOR CONFLUENCE ANALYSIS
   *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
       HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR (FT) (FT) SIDE / SIDE / WAY (FT) (FT) (FT) (FT) (n)

    30.0
    20.0
    0.018/0.018/0.020
    0.67
    2.00
    0.0313
    0.167
    0.0150

    17.0
    10.0
    0.020/0.020/0.020
    0.50
    1.50
    0.0313
    0.125
    0.0150

    20.0
    12.0
    0.020/0.020/0.020
    0.50
    1.50
    0.0313
    0.125
    0.0150

    10.0
    0.020/0.020/0.020
    0.50
    1.50
    0.0313
    0.125
    0.0150

  1
                         10.0 0.020/0.020/0.020 0.50 1.50 0.0313 0.125 0.0150 18.0 0.020/0.020/0.020 0.50 1.50 0.0313 0.125 0.0150 12.0 0.020/0.020/0.020 0.50 1.50 0.0313 0.125 0.0150
   4
         16.0
26.0
         44.0
                        12.0
   GLOBAL STREET FLOW-DEPTH CONSTRAINTS:
      1. Relative Flow-Depth = 0.50 FEET
           as (Maximum Allowable Street Flow Depth) - (Top-of-Curb)
       2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)
   *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
    OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
******************
  FLOW PROCESS FROM NODE 100.00 TO NODE 101.00 IS CODE = 21
  >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
   *USER SPECIFIED(SUBAREA):
   VEGETATED SLOPES (STEEP) RUNOFF COEFFICIENT = .6000
   INITIAL SUBAREA FLOW-LENGTH(FEET) = 100.00
   UPSTREAM ELEVATION(FEET) = 613.00

DOWNSTREAM ELEVATION(FEET) = 607.00

ELEVATION DIFFERENCE(FEET) = 6.00
   URBAN SUBAREA OVERLAND TIME OF FLOW(MIN.) = 4.953
      50 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.612
   NOTE: RAINFALL INTENSITY IS BASED ON To = 5-MINUTE.
  NOTE: RAINFALL ....

SUBAREA RUNOFF(CFS) = 0.37

One of the control of the contro
                                                                                                        0.37
*******************
 FLOW PROCESS FROM NODE 101.00 TO NODE 102.00 IS CODE = 53
   >>>>COMPUTE NATURAL MOUNTAIN CHANNEL FLOW<
   >>>>TRAVELTIME THRU SUBAREA<
______
   ELEVATION DATA: UPSTREAM(FEET) = 607.00 DOWNSTREAM(FEET) = 435.
CHANNEL LENGTH THRU SUBAREA(FEET) = 1033.00 CHANNEL SLOPE = 0.1665
                                                                                                                       435.00
   NOTE: CHANNEL FLOW OF 1. CFS WAS ASSUMED IN VELOCITY ESTIMATION
   CHANNEL FLOW THRU SUBAREA(CFS) = 0.37
  FLOW VELOCITY(FEET/SEC) = 2.29 (PER LACFCD/RCFC&WCD HYDROLOGY MANUAL)
TRAVEL TIME(MIN.) = 7.53 TC(MIN.) = 12.49
LONGEST FLOWPATH FROM NODE 100.00 TO NODE 102.00 = 1133.00 FEE
                                                                                                          1133.00 FEET.
*****
  FLOW PROCESS FROM NODE 101.00 TO NODE 102.00 IS CODE = 81
  >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
```

```
50 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.110
 *USER SPECIFIED(SUBAREA):
 VEGETATED SLOPES (STEEP) RUNOFF COEFFICIENT = .6000
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.6000
 SUBAREA AREA(ACRES) = 7.06 SUBAREA RUNOFF(CFS) = 13.17
TOTAL AREA(ACRES) = 7.2 TOTAL RUNOFF(CFS) = 13.
 TC(MIN.) = 12.49
******************
 FLOW PROCESS FROM NODE 102.00 TO NODE 103.00 IS CODE = 52
 >>>>COMPUTE NATURAL VALLEY CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA
______
 ELEVATION DATA: UPSTREAM(FEET) = 435.00 DOWNSTREAM(FEET) = 280.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 1203.00 CHANNEL SLOPE = 0.1288
 NOTE: CHANNEL SLOPE OF .1 WAS ASSUMED IN VELOCITY ESTIMATION
 CHANNEL FLOW THRU SUBAREA(CFS) =
                                 13.38
 TRAVEL TIME(MIN.) = 2.35 TC(MIN.) = 14.84

LONGEST FLOWPATH FROM NODE 100.00 TO NODE 103.00 = 2336.00 FEE
                                                       2336.00 FEET.
*******************
 FLOW PROCESS FROM NODE 102.00 TO NODE 103.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
   50 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.782
  *USER SPECIFIED(SUBAREA):
 VEGETATED SLOPES (STEEP) RUNOFF COEFFICIENT = .6000
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.6000
 SUBAREA AREA(ACRES) = 29.34 SUBAREA RUNOFF(CFS) = 48.97
TOTAL AREA(ACRES) = 36.5 TOTAL RUNOFF(CFS) = 60.
 TOTAL AREA(ACRES) =
 TC(MIN.) = 14.84
 FLOW PROCESS FROM NODE 103.00 TO NODE 113.00 IS CODE = 52
 >>>>COMPUTE NATURAL VALLEY CHANNEL FLOW<>
 >>>>TRAVELTIME THRU SUBAREA<
______
 ELEVATION DATA: UPSTREAM(FEET) = 280.00 DOWNSTREAM(FEET) = 269.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 480.00 CHANNEL SLOPE = 0.0229 CHANNEL FLOW THRU SUBAREA(CFS) = 60.94
                                                             269.00
 CHANNEL FLOW THRU SUBAREA(CFS) =
                                    60.94
 FLOW VELOCITY(FEET/SEC) = 6.21 (PER LACFCD/RCFC&WCD HYDROLOGY MANUAL)
 TRAVEL TIME (MIN.) = 1.29 TC (MIN.) = 16.13
LONGEST FLOWPATH FROM NODE 100.00 TO NODE
                                                       2816.00 FEET.
                                            113.00 =
*****
 FLOW PROCESS FROM NODE 113.00 TO NODE 113.00 IS CODE = 1
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <<<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 16.13
 RAINFALL INTENSITY(INCH/HR) = 2.64
TOTAL STREAM AREA(ACRES) = 36.51
                               2.64
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                      60.94
***************
 FLOW PROCESS FROM NODE 110.00 TO NODE 111.00 IS CODE = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
 *USER SPECIFIED(SUBAREA):
 VEGETATED SLOPES (STEEP) RUNOFF COEFFICIENT = .6000
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 100.00
 UPSTREAM ELEVATION(FEET) = 643.00
DOWNSTREAM ELEVATION(FEET) = 633.0
 DOWNSTREAM ELEVATION(FEET) = 633.00
ELEVATION DIFFERENCE(FEET) = 10.00
 URBAN SUBAREA OVERLAND TIME OF FLOW(MIN.) =
                                           4.178
 WARNING: THE MAXIMUM OVERLAND FLOW SLOPE, 10.%, IS USED IN To CALCULATION!
   50 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.612
 NOTE: RAINFALL INTENSITY IS BASED ON To = 5-MINUTE.
 NOTE: KAINFALL ...
SUBAREA RUNOFF(CFS) = 0.30
0.09 TOTAL RUNOFF(CFS) =
************************
 FLOW PROCESS FROM NODE 111.00 TO NODE 112.00 IS CODE = 53
 >>>>COMPUTE NATURAL MOUNTAIN CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA<
______
 ELEVATION DATA: UPSTREAM(FEET) = 633.00 DOWNSTREAM(FEET) = 390.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 1383.00 CHANNEL SLOPE = 0.1757
 NOTE: CHANNEL FLOW OF 1. CFS WAS ASSUMED IN VELOCITY ESTIMATION
 CHANNEL FLOW THRU SUBAREA(CFS) = 0.30
 FLOW VELOCITY(FEET/SEC) = 2.35 (PER LACFCD/RCFC&WCD HYDROLOGY MANUAL)
TRAVEL TIME(MIN.) = 9.82 Tc(MIN.) = 14.00
```

```
****************************
 FLOW PROCESS FROM NODE 111.00 TO NODE 112.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<>>>
______
   50 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.889
 *USER SPECIFIED(SUBAREA):
 VEGETATED SLOPES (STEEP) RUNOFF COEFFICIENT = .6000
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.6000
 SUBAREA AREA(ACRES) = 17.23 SUBAREA RUNOFF(CFS) = 29.87
TOTAL AREA(ACRES) = 17.3 TOTAL RUNOFF(CFS) = 30.
 TC(MIN.) = 14.00
****************
 FLOW PROCESS FROM NODE 112.00 TO NODE 113.00 IS CODE = 52
 >>>>COMPUTE NATURAL VALLEY CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA<
ELEVATION DATA: UPSTREAM(FEET) = 390.00 DOWNSTREAM(FEET) =
 CHANNEL LENGTH THRU SUBAREA(FEET) = 1243.00 CHANNEL SLOPE = 0.0973
 CHANNEL FLOW THRU SUBAREA(CFS) =
                                   30.02
 FLOW VELOCITY(FEET/SEC) = 10.45 (PER LACFCD/RCFC&WCD HYDROLOGY MANUAL)
 TRAVEL TIME (MIN.) = 1.98 TC (MIN.) = 15.98

LONGEST FLOWPATH FROM NODE 110.00 TO NODE 113.00 =
*******************
 FLOW PROCESS FROM NODE 112.00 TO NODE 113.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
   50 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.652
  *USER SPECIFIED(SUBAREA):
 VEGETATED SLOPES (STEEP) RUNOFF COEFFICIENT = .6000
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.6000
 SUBAREA AREA(ACRES) = 19.29 SUBAREA RUNOFF(CFS) = 30.70 TOTAL AREA(ACRES) = 36.6 TOTAL RUNOFF(CFS) = 58.
 TC(MIN.) = 15.98
 FLOW PROCESS FROM NODE 113.00 TO NODE 113.00 IS CODE = 1
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <<-
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES <>>>
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 15.98
RAINFALL INTENSITY(INCH/HR) = 2.65
TOTAL STREAM AREA(ACRES) = 36.61
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                    58.26
 ** CONFLUENCE DATA **
         RUNOFF
                             INTENSITY
 STREAM
                      Tc
                                           AREA
                   (MIN.) (INCH/HOUR)
 NUMBER
           (CFS)
                                          (ACRE)
                                          36.51
            60.94 16.13 2.636
58.26 15.98 2.652
     1
           58.26
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
 STREAM RUNOFF TC
NUMBER (CFS) (MIN.)
1 118.63 15.98
                            INTENSITY
                    (MIN.) (INCH/HOUR)
                           2.652
2.636
     2.
           118.85
                   16.13
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 118.85 Tc(MIN.) = 16.13
TOTAL AREA(ACRES) = 73.1
 LONGEST FLOWPATH FROM NODE 100.00 TO NODE
                                          113.00 =
                                                     2816.00 FEET.
*****
 FLOW PROCESS FROM NODE 113.00 TO NODE 123.00 IS CODE = 52
 >>>>COMPUTE NATURAL VALLEY CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA<
_______
 ELEVATION DATA: UPSTREAM(FEET) = 269.00 DOWNSTREAM(FEET) = 236.00
 CHANNEL LENGTH THRU SUBAREA(FEET) = 972.00
CHANNEL FLOW THRU SUBAREA(CFS) = 118.85
                                           CHANNEL SLOPE = 0.0340
 FLOW VELOCITY(FEET/SEC) = 9.21 (PER LACFCD/RCFC&WCD HYDROLOGY MANUAL)
TRAVEL TIME(MIN.) = 1.76 Tc(MIN.) = 17.89
LONGEST FLOWPATH FROM NODE 100.00 TO NODE 123.00 = 3788.00 FEE
 FLOW PROCESS FROM NODE 123.00 TO NODE 123.00 IS CODE = 1
```

```
>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <<-
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 17.89
 RAINFALL INTENSITY(INCH/HR) =
                          73.12
 TOTAL STREAM AREA(ACRES) =
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                   118.85
******************
 FLOW PROCESS FROM NODE 120.00 TO NODE 121.00 IS CODE = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
_____
 *USER SPECIFIED(SUBAREA):
 VEGETATED SLOPES (STEEP) RUNOFF COEFFICIENT = .6000
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 100.00
 UPSTREAM ELEVATION(FEET) = 530.00

DOWNSTREAM ELEVATION(FEET) = 520.00

ELEVATION DIFFERENCE(FEET) = 10.00
 URBAN SUBAREA OVERLAND TIME OF FLOW(MIN.) = 4.178 WARNING: THE MAXIMUM OVERLAND FLOW SLOPE, 10.%, IS USED IN To CALCULATION!
   50 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.612
 NOTE: RAINFALL INTENSITY IS BASED ON To = 5-MINUTE.
 NOTE: KAINFALL IIII
SUBAREA RUNOFF(CFS) = 0.40
                        0.40
                            TOTAL RUNOFF(CFS) =
                                                   0.40
 FLOW PROCESS FROM NODE 121.00 TO NODE 122.00 IS CODE = 53
 >>>>COMPUTE NATURAL MOUNTAIN CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA<
_____
 ELEVATION DATA: UPSTREAM(FEET) = 520.00 DOWNSTREAM(FEET) = 325.0
CHANNEL LENGTH THRU SUBAREA(FEET) = 1285.00 CHANNEL SLOPE = 0.1518
 NOTE: CHANNEL FLOW OF 1. CFS WAS ASSUMED IN VELOCITY ESTIMATION
 CHANNEL FLOW THRU SUBAREA(CFS) =
                                 0.40
 FLOW VELOCITY(FEET/SEC) = 2.18 (PER LACFCD/RCFC&WCD HYDROLOGY MANUAL)
TRAVEL TIME(MIN.) = 9.82 Tc(MIN.) = 14.00
 LONGEST FLOWPATH FROM NODE 120.00 TO NODE
                                          122.00 =
                                                     1385.00 FEET.
*****
 FLOW PROCESS FROM NODE 121.00 TO NODE 122.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
_______
   50 YEAR RAINFALL INTENSITY (INCH/HOUR) = 2.889
  *USER SPECIFIED(SUBAREA):
 VEGETATED SLOPES (STEEP) RUNOFF COEFFICIENT = .6000
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.6000
 SUBAREA AREA(ACRES) = 14.79 SUBAREA RUNOFF(CFS) = 25.64
TOTAL AREA(ACRES) = 14.9 TOTAL RUNOFF(CFS) = 25.8
 TC(MIN.) = 14.00
*****************
 FLOW PROCESS FROM NODE 122.00 TO NODE 123.00 IS CODE = 52
 >>>>COMPUTE NATURAL VALLEY CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA<
______
 ELEVATION DATA: UPSTREAM(FEET) = 325.00 DOWNSTREAM(FEET) = 236.00
 CHANNEL LENGTH THRU SUBAREA(FEET) = 1065.00
CHANNEL FLOW THRU SUBAREA(CFS) = 25.85
                                         CHANNEL SLOPE = 0.0836
 TRAVEL TIME(MIN.) = 1.91 TC(MIN.) = 15.91
 LONGEST FLOWPATH FROM NODE 120.00 TO NODE
                                          123.00 =
                                                   2450.00 FEET.
 FLOW PROCESS FROM NODE 122.00 TO NODE 123.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
   50 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.660
 *USER SPECIFIED(SUBAREA):
 VEGETATED SLOPES (STEEP) RUNOFF COEFFICIENT = .6000
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.6000
 SUBAREA AREA(ACRES) = 25.97 SUBAREA RUNOFF(CFS) = 41.45
TOTAL AREA(ACRES) = 40.9 TOTAL RUNOFF(CFS) = 65.
 TC(MIN.) = 15.91
 FLOW PROCESS FROM NODE 123.00 TO NODE 123.00 IS CODE = 1
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFIJIENCE<>
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 15.91
```

RAINFALL INTENSITY(INCH/HR) = 2.66

```
** CONFLUENCE DATA **
                     Tc
 STREAM RUNOFF
                            INTENSITY
 NUMBER
            (CFS)
                   (MIN.) (INCH/HOUR)
                                         73.12
                   17.89 2.466
15.91 2.660
           118.85
    1
                   15.91
           65.25
                              2.660
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
        RUNOFF TC INTENSITY (CFS) (MIN.) (INCH/HOUR)
 STREAM
 NUMBER
                           2.660
    1
           175.43
                   15.91
           179.34 17.89
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 179.34 Tc(MIN.) = 17.89
TOTAL AREA(ACRES) = 114.0
 TOTAL AREA(ACRES) =
 LONGEST FLOWPATH FROM NODE
                           100.00 TO NODE
                                          123.00 =
                                                    3788.00 FEET.
 FLOW PROCESS FROM NODE 123.00 TO NODE 124.00 IS CODE = 52
 >>>>COMPUTE NATURAL VALLEY CHANNEL FLOW<>
 >>>>TRAVELTIME THRU SUBAREA<
-----
 ELEVATION DATA: UPSTREAM(FEET) = 236.00 DOWNSTREAM(FEET) =
 CHANNEL LENGTH THRU SUBAREA(FEET) = 1970.00 CHANNEL SLOPE = 0.0183
CHANNEL FLOW THRU SUBAREA(CFS) = 179.34
 FLOW VELOCITY(FEET/SEC) = 7.67 (PER LACFCD/RCFC&WCD HYDROLOGY MANUAL)
 TRAVEL TIME(MIN.) = 4.28 TC(MIN.) = 22.17
LONGEST FLOWPATH FROM NODE 100.00 TO NODE
                                          124.00 =
*****
 FLOW PROCESS FROM NODE 123.00 TO NODE 124.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<>>>
______
   50 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.147
  *USER SPECIFIED(SUBAREA):
 VEGETATED SLOPES (STEEP) RUNOFF COEFFICIENT = .6000
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.6000
 SUBAREA AREA(ACRES) = 19.96 SUBAREA RUNOFF(CFS) = 25.72
TOTAL AREA(ACRES) = 134.0 TOTAL RUNOFF(CFS) = 179.34
 TOTAL AREA(ACRES) = TC(MIN.) = 22.17
 NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE
**************
FLOW PROCESS FROM NODE 124.00 TO NODE 124.00 IS CODE = 1
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFIGURNCE<
_______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 22.17
RAINFALL INTENSITY(INCH/HR) = 2.15
 TOTAL STREAM AREA(ACRES) =
                          133.96
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                   179.34
*****************
 FLOW PROCESS FROM NODE 130.00 TO NODE 131.00 IS CODE = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS
_______
 *USER SPECIFIED(SUBAREA):
 VEGETATED SLOPES (STEEP) RUNOFF COEFFICIENT = .6000
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 100.00
 UPSTREAM ELEVATION(FEET) = 650.00

DOWNSTREAM ELEVATION(FEET) = 640.00

ELEVATION DIFFERENCE(FEET) = 10.00
 ELEVATION DIFFERENCE(FEET) =
                              10.00
 URBAN SUBAREA OVERLAND TIME OF FLOW(MIN.) =
                                         4.178
 WARNING: THE MAXIMUM OVERLAND FLOW SLOPE, 10.%, IS USED IN To CALCULATION!
   50 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.612
 NOTE: RAINFALL INTENSITY IS BASED ON Tc = 5-MINUTE.
 NOTE: KAINFALL ...

SUBAREA RUNOFF(CFS) = 1.58

0.47 TOTAL RUNOFF(CFS) =
 FLOW PROCESS FROM NODE 131.00 TO NODE 132.00 IS CODE = 53
 >>>>COMPUTE NATURAL MOUNTAIN CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA<
______
 ELEVATION DATA: UPSTREAM(FEET) = 640.00 DOWNSTREAM(FEET) = 450.00
 CHANNEL LENGTH THRU SUBAREA(FEET) = 1167.00 CHANNEL SLOPE = 0.1628
 CHANNEL FLOW THRU SUBAREA(CFS) =
                                  1.58
```

FLOW VELOCITY(FEET/SEC) = 2.63 (PER LACFCD/RCFC&WCD HYDROLOGY MANUAL)

```
TRAVEL TIME(MIN.) = 7.39 Tc(MIN.) = 11.57
 LONGEST FLOWPATH FROM NODE 130.00 TO NODE 132.00 =
                                                  1267.00 FEET.
*******************
 FLOW PROCESS FROM NODE 131.00 TO NODE 132.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
-----
   50 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.268
 *USER SPECIFIED(SUBAREA):
 VEGETATED SLOPES (STEEP) RUNOFF COEFFICIENT = .6000
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.6000
 SUBAREA AREA(ACRES) = 18.69 SUBAREA RUNOFF(CFS) = 36.64
                     19.2 TOTAL RUNOFF(CFS) =
 TOTAL AREA(ACRES) =
 TC(MIN.) = 11.57
*****************************
 FLOW PROCESS FROM NODE 132.00 TO NODE 133.00 IS CODE = 52
 >>>>COMPUTE NATURAL VALLEY CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA<
______
 ELEVATION DATA: UPSTREAM(FEET) = 450.00 DOWNSTREAM(FEET) = 360.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 1271.00 CHANNEL SLOPE = 0.0708
                                37.56
 CHANNEL FLOW THRU SUBAREA(CFS) =
 FLOW VELOCITY(FEET/SEC) = 9.49 (PER LACFCD/RCFC&WCD HYDROLOGY MANUAL)
TRAVEL TIME(MIN.) = 2.23 Tc(MIN.) = 13.80
LONGEST FLOWPATH FROM NODE 130.00 TO NODE 133.00 = 2538.00 FEE
                                                    2538.00 FEET.
*******************
 FLOW PROCESS FROM NODE 132.00 TO NODE 133.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
   50 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.916
 *USER SPECIFIED(SUBAREA):
 VEGETATED SLOPES (STEEP) RUNOFF COEFFICIENT = .6000
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.6000
 SUBAREA AREA(ACRES) = 25.58 SUBAREA RUNOFF(CFS) = 44.75
                     44.7 TOTAL RUNOFF(CFS) =
 TOTAL AREA(ACRES) =
 TC(MIN.) = 13.80
*******************
 FLOW PROCESS FROM NODE 133.00 TO NODE 124.00 IS CODE = 53
 >>>>COMPUTE NATURAL MOUNTAIN CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA<
_______
 ELEVATION DATA: UPSTREAM(FEET) = 360.00 DOWNSTREAM(FEET) = 200.00
 CHANNEL LENGTH THRU SUBAREA(FEET) = 1666.00
CHANNEL FLOW THRU SUBAREA(CFS) = 78.28
                                        CHANNEL SLOPE = 0.0960
 CHANNEL FLOW THRU SUBAREA(CFS) =
 TRAVEL TIME(MIN.) = 3.75 Tc(MIN.) = 17.54

LONGEST FLOWPATH FROM NODE 130.00 TO NODE 124.00 = 4204.00 FEE
                                                  4204.00 FEET.
*****
 FLOW PROCESS FROM NODE 133.00 TO NODE 124.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
   50 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.498
 *USER SPECIFIED(SUBAREA):
 VEGETATED SLOPES (STEEP) RUNOFF COEFFICIENT = .6000
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.6000
 SUBAREA AREA(ACRES) = 22.68 SUBAREA RUNOFF(CFS) = 33.99
TOTAL AREA(ACRES) = 67.4 TOTAL RUNOFF(CFS) = 101.
 TOTAL AREA(ACRES) =
 TC(MIN.) =
           17.54
 FLOW PROCESS FROM NODE 124.00 TO NODE 124.00 IS CODE = 1
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFIJIENCE<>
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 17.54
RAINFALL INTENSITY(INCH/HR) = 2.50
TOTAL STREAM AREA(ACRES) = 67.42
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                  101.03
 ** CONFLUENCE DATA **
```

RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS.

Tc

22.17

17.54

INTENSITY

(MIN.) (INCH/HOUR) (ACRE)

2.498

2.147

AREA

133.96

STREAM

NUMBER

1

2

RUNOFF

179.34

101.03

(CFS)

** PEAK FLOW RATE TABLE **
STREAM RUNOFF TC INTENSITY
NUMBER (CFS) (MIN.) (INCH/HOUR)

1 255.23 17.54 2.498
2 266.21 22.17 2.147

COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
PEAK FLOW RATE(CFS) = 266.21 Tc(MIN.) = 22.17
TOTAL AREA(ACRES) = 201.4
LONGEST FLOWPATH FROM NODE 100.00 TO NODE 124.00 = 5758.00 FEET.

END OF STUDY SUMMARY:
TOTAL AREA(ACRES) = 201.4 TC(MIN.) = 22.17
PEAK FLOW RATE(CFS) = 266.21

END OF RATIONAL METHOD ANALYSIS

CHAPTER 3

3.2 – 100-Year Existing Condition AES Model Output

HYDROLOGIC ANALYSIS

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 2003,1985,1981 HYDROLOGY MANUAL

(c) Copyright 1982-2010 Advanced Engineering Software (aes)

Ver. 17.0 Release Date: 07/01/2010 License ID 1239

Analysis prepared by:

Hunsaker & Associates San Diego, Inc. 9707 Waples Street San Diego, CA 92121

```
* Otay Ranch village 4 South
* 100-year return interval
* DLN 0924, W.O. 3206-0002
                           FILE NAME: R:\0924\HYD\CALCS\AES\EX100.DAT
 TIME/DATE OF STUDY: 16:06 02/26/2015
 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
 2003 SAN DIEGO MANUAL CRITERIA
 USER SPECIFIED STORM EVENT(YEAR) = 100.00
 6-HOUR DURATION PRECIPITATION (INCHES) =
                                              2.350
 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00
 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.90
 SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD
 NOTE: USE MODIFIED RATIONAL METHOD PROCEDURES FOR CONFLUENCE ANALYSIS
  *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
    HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR (FT) (FT) SIDE / SIDE / WAY (FT) (FT) (FT) (FT) (n)

    30.0
    20.0
    0.018/0.018/0.020
    0.67
    2.00
    0.0313
    0.167
    0.0150

    17.0
    10.0
    0.020/0.020/0.020
    0.50
    1.50
    0.0313
    0.125
    0.0150

    20.0
    12.0
    0.020/0.020/0.020
    0.50
    1.50
    0.0313
    0.125
    0.0150

    10.0
    0.020/0.020/0.020
    0.50
    1.50
    0.0313
    0.125
    0.0150

 1
              10.0 0.020/0.020/0.020 0.50 1.50 0.0313 0.125 0.0150 18.0 0.020/0.020/0.020 0.50 1.50 0.0313 0.125 0.0150 12.0 0.020/0.020/0.020 0.50 1.50 0.0313 0.125 0.0150
 4
     16.0
26.0
     44.0
              12.0
 GLOBAL STREET FLOW-DEPTH CONSTRAINTS:
   1. Relative Flow-Depth = 0.50 FEET
      as (Maximum Allowable Street Flow Depth) - (Top-of-Curb)
    2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)
  *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
  OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
******************
 FLOW PROCESS FROM NODE 100.00 TO NODE 101.00 IS CODE = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
  *USER SPECIFIED(SUBAREA):
 VEGETATED SLOPES (STEEP) RUNOFF COEFFICIENT = .6000
  INITIAL SUBAREA FLOW-LENGTH(FEET) = 100.00
 UPSTREAM ELEVATION(FEET) = 613.00

DOWNSTREAM ELEVATION(FEET) = 607.00

ELEVATION DIFFERENCE(FEET) = 6.00
 URBAN SUBAREA OVERLAND TIME OF FLOW(MIN.) = 4.953
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.192
 NOTE: RAINFALL INTENSITY IS BASED ON To = 5-MINUTE.
 NOTE: RAINFALL ....

SUBAREA RUNOFF(CFS) = 0.41

O.11 TOTAL RUNOFF(CFS) =
                                                             0.41
*******************
 FLOW PROCESS FROM NODE 101.00 TO NODE 102.00 IS CODE = 53
 >>>>COMPUTE NATURAL MOUNTAIN CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA<
______
 ELEVATION DATA: UPSTREAM(FEET) = 607.00 DOWNSTREAM(FEET) = 435.
CHANNEL LENGTH THRU SUBAREA(FEET) = 1033.00 CHANNEL SLOPE = 0.1665
                                                                      435.00
 NOTE: CHANNEL FLOW OF 1. CFS WAS ASSUMED IN VELOCITY ESTIMATION
 CHANNEL FLOW THRU SUBAREA(CFS) = 0.41
 FLOW VELOCITY(FEET/SEC) = 2.29 (PER LACFCD/RCFC&WCD HYDROLOGY MANUAL)
TRAVEL TIME(MIN.) = 7.53 TC(MIN.) = 12.49
LONGEST FLOWPATH FROM NODE 100.00 TO NODE 102.00 = 1133.00 FEE
                                                              1133.00 FEET.
*****
 FLOW PROCESS FROM NODE 101.00 TO NODE 102.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
```

```
100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.431
  *USER SPECIFIED(SUBAREA):
 VEGETATED SLOPES (STEEP) RUNOFF COEFFICIENT = .6000
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.6000
 SUBAREA AREA(ACRES) = 7.06 SUBAREA RUNOFF(CFS) = 14.53
TOTAL AREA(ACRES) = 7.2 TOTAL RUNOFF(CFS) = 14.
 TC(MIN.) = 12.49
******************
 FLOW PROCESS FROM NODE 102.00 TO NODE 103.00 IS CODE = 52
 >>>>COMPUTE NATURAL VALLEY CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA
______
 ELEVATION DATA: UPSTREAM(FEET) = 435.00 DOWNSTREAM(FEET) = 280.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 1203.00 CHANNEL SLOPE = 0.1288
 NOTE: CHANNEL SLOPE OF .1 WAS ASSUMED IN VELOCITY ESTIMATION
 CHANNEL FLOW THRU SUBAREA(CFS) =
                                 14.76
 TRAVEL TIME(MIN.) = 2.29 Tc(MIN.) = 14.78

LONGEST FLOWPATH FROM NODE 100.00 TO NODE 103.00 = 2336.00 FEE
                                                      2336.00 FEET.
*******************
 FLOW PROCESS FROM NODE 102.00 TO NODE 103.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.077
  *USER SPECIFIED(SUBAREA):
 VEGETATED SLOPES (STEEP) RUNOFF COEFFICIENT = .6000
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.6000
 SUBAREA AREA(ACRES) = 29.34 SUBAREA RUNOFF(CFS) = 54.17
TOTAL AREA(ACRES) = 36.5 TOTAL RUNOFF(CFS) = 67.4
 TOTAL AREA(ACRES) =
 TC(MIN.) = 14.78
 FLOW PROCESS FROM NODE 103.00 TO NODE 113.00 IS CODE = 52
 >>>>COMPUTE NATURAL VALLEY CHANNEL FLOW<>
 >>>>TRAVELTIME THRU SUBAREA<
______
 ELEVATION DATA: UPSTREAM(FEET) = 280.00 DOWNSTREAM(FEET) = 269.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 480.00 CHANNEL SLOPE = 0.0229 CHANNEL FLOW THRU SUBAREA(CFS) = 67.41
                                                             269.00
 CHANNEL FLOW THRU SUBAREA(CFS) =
                                    67.41
 FLOW VELOCITY(FEET/SEC) = 6.39 (PER LACFCD/RCFC&WCD HYDROLOGY MANUAL)
                     1.25 Tc(MIN.) = 16.03
1 NODE 100.00 TO NODE
 TRAVEL TIME(MIN.) =
                                                      2816.00 FEET.
 LONGEST FLOWPATH FROM NODE
                                            113.00 =
*****
 FLOW PROCESS FROM NODE 113.00 TO NODE 113.00 IS CODE = 1
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <<<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 16.03
 RAINFALL INTENSITY(INCH/HR) = 2.92
TOTAL STREAM AREA(ACRES) = 36.51
                               2 92
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                     67.41
***************
 FLOW PROCESS FROM NODE 110.00 TO NODE 111.00 IS CODE = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
 *USER SPECIFIED(SUBAREA):
 VEGETATED SLOPES (STEEP) RUNOFF COEFFICIENT = .6000
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 100.00
 UPSTREAM ELEVATION(FEET) = 643.00

DOWNSTREAM ELEVATION(FEET) = 633.00

ELEVATION DIFFERENCE(FEET) = 10.00
 URBAN SUBAREA OVERLAND TIME OF FLOW(MIN.) =
                                           4.178
 WARNING: THE MAXIMUM OVERLAND FLOW SLOPE, 10.%, IS USED IN To CALCULATION!
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.192
 NOTE: RAINFALL INTENSITY IS BASED ON To = 5-MINUTE.
 NOTE: KAINFALL ...
SUBAREA RUNOFF(CFS) = 0.33
0.09 TOTAL RUNOFF(CFS) =
************************
 FLOW PROCESS FROM NODE 111.00 TO NODE 112.00 IS CODE = 53
 >>>>COMPUTE NATURAL MOUNTAIN CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA<
______
 ELEVATION DATA: UPSTREAM(FEET) = 633.00 DOWNSTREAM(FEET) = 390.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 1383.00 CHANNEL SLOPE = 0.1757
 NOTE: CHANNEL FLOW OF 1. CFS WAS ASSUMED IN VELOCITY ESTIMATION
 CHANNEL FLOW THRU SUBAREA(CFS) = 0.33
 FLOW VELOCITY(FEET/SEC) = 2.35 (PER LACFCD/RCFC&WCD HYDROLOGY MANUAL)
TRAVEL TIME(MIN.) = 9.82 Tc(MIN.) = 14.00
```

```
*****************************
 FLOW PROCESS FROM NODE 111.00 TO NODE 112.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<>>>
______
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.187
 *USER SPECIFIED(SUBAREA):
 VEGETATED SLOPES (STEEP) RUNOFF COEFFICIENT = .6000
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.6000
 SUBAREA AREA(ACRES) = 17.23 SUBAREA RUNOFF(CFS) = 32.95
TOTAL AREA(ACRES) = 17.3 TOTAL RUNOFF(CFS) = 33.
 TC(MIN.) = 14.00
****************
 FLOW PROCESS FROM NODE 112.00 TO NODE 113.00 IS CODE = 52
 >>>>COMPUTE NATURAL VALLEY CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA<
ELEVATION DATA: UPSTREAM(FEET) = 390.00 DOWNSTREAM(FEET) = 269.0

CHANNEL LENGTH THRU SUBAREA(FEET) = 1243.00 CHANNEL SLOPE = 0.0973

CHANNEL FLOW THRU SUBAREA(CFS) = 33.12
 CHANNEL FLOW THRU SUBAREA(CFS) =
                                    33.12
 FLOW VELOCITY(FEET/SEC) = 10.74 (PER LACFCD/RCFC&WCD HYDROLOGY MANUAL)
 TRAVEL TIME (MIN.) = 1.93 TC (MIN.) = 15.93
LONGEST FLOWPATH FROM NODE 110.00 TO NODE 113.00 =
*******************
 FLOW PROCESS FROM NODE 112.00 TO NODE 113.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.933
  *USER SPECIFIED(SUBAREA):
 VEGETATED SLOPES (STEEP) RUNOFF COEFFICIENT = .6000
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.6000
 SUBAREA AREA(ACRES) = 19.29 SUBAREA RUNOFF(CFS) = 33.94
TOTAL AREA(ACRES) = 36.6 TOTAL RUNOFF(CFS) = 64.4
 TC(MIN.) = 15.93
 FLOW PROCESS FROM NODE 113.00 TO NODE 113.00 IS CODE = 1
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <---
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES <>>>
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 15.93
RAINFALL INTENSITY(INCH/HR) = 2.93
TOTAL STREAM AREA(ACRES) = 36.61
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                      64.42
 ** CONFLUENCE DATA **
         RUNOFF
 STREAM
                               INTENSITY
                      Tc
                                             AREA
                    (MIN.) (INCH/HOUR)
 NUMBER
           (CFS)
                                            (ACRE)
                                            36.51
     1
            67.41 16.03 2.920
64.42 15.93 2.933
            64.42
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
 STREAM RUNOFF TC
NUMBER (CFS) (MIN.)
1 131.38 15.93
                             INTENSITY
                    (MIN.) (INCH/HOUR)
                            2.933
2.920
     2
           131.55
                   16.03
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 131.55 Tc(MIN.) = 16.03
TOTAL AREA(ACRES) = 73.1
 LONGEST FLOWPATH FROM NODE 100.00 TO NODE
                                            113.00 =
                                                       2816.00 FEET.
*****
 FLOW PROCESS FROM NODE 113.00 TO NODE 123.00 IS CODE = 52
 >>>>COMPUTE NATURAL VALLEY CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA
_______
 ELEVATION DATA: UPSTREAM(FEET) = 269.00 DOWNSTREAM(FEET) = 236.00
 CHANNEL LENGTH THRU SUBAREA(FEET) = 972.00
CHANNEL FLOW THRU SUBAREA(CFS) = 131.55
                                            CHANNEL SLOPE = 0.0340
 FLOW VELOCITY(FEET/SEC) = 9.50 (PER LACFCD/RCFC&WCD HYDROLOGY MANUAL)
TRAVEL TIME(MIN.) = 1.70 Tc(MIN.) = 17.74
LONGEST FLOWPATH FROM NODE 100.00 TO NODE 123.00 = 3788.00 FEE
                                                       3788.00 FEET.
 FLOW PROCESS FROM NODE 123.00 TO NODE 123.00 IS CODE = 1
```

```
>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <<-
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 17.74
 RAINFALL INTENSITY(INCH/HR) =
                          73.12
 TOTAL STREAM AREA(ACRES) =
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                   131.55
*****
 FLOW PROCESS FROM NODE 120.00 TO NODE 121.00 IS CODE = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
_____
 *USER SPECIFIED(SUBAREA):
 VEGETATED SLOPES (STEEP) RUNOFF COEFFICIENT = .6000
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 100.00
 UPSTREAM ELEVATION(FEET) = 530.00

DOWNSTREAM ELEVATION(FEET) = 520.00

ELEVATION DIFFERENCE(FEET) = 10.00
 URBAN SUBAREA OVERLAND TIME OF FLOW(MIN.) = 4.178 WARNING: THE MAXIMUM OVERLAND FLOW SLOPE, 10.%, IS USED IN To CALCULATION!
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.192
 NOTE: RAINFALL INTENSITY IS BASED ON To = 5-MINUTE.
 NOTE: KAINFALL III.

SUBAREA RUNOFF(CFS) = 0.45

TOTAL ADFA(ACRES) = 0.12
                        0.45
                             TOTAL RUNOFF(CFS) =
                                                   0.45
 FLOW PROCESS FROM NODE 121.00 TO NODE 122.00 IS CODE = 53
 >>>>COMPUTE NATURAL MOUNTAIN CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA<
_____
 ELEVATION DATA: UPSTREAM(FEET) = 520.00 DOWNSTREAM(FEET) = 325.0
CHANNEL LENGTH THRU SUBAREA(FEET) = 1285.00 CHANNEL SLOPE = 0.1518
 NOTE: CHANNEL FLOW OF 1. CFS WAS ASSUMED IN VELOCITY ESTIMATION
 CHANNEL FLOW THRU SUBAREA(CFS) =
                                 0.45
 FLOW VELOCITY(FEET/SEC) = 2.18 (PER LACFCD/RCFC&WCD HYDROLOGY MANUAL)
TRAVEL TIME(MIN.) = 9.82 Tc(MIN.) = 14.00
 LONGEST FLOWPATH FROM NODE 120.00 TO NODE
                                          122.00 =
                                                     1385.00 FEET.
*****
 FLOW PROCESS FROM NODE 121.00 TO NODE 122.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
_______
  100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 3.188
  *USER SPECIFIED(SUBAREA):
 VEGETATED SLOPES (STEEP) RUNOFF COEFFICIENT = .6000
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.6000
 SUBAREA AREA(ACRES) = 14.79 SUBAREA RUNOFF(CFS) = 28.29
TOTAL AREA(ACRES) = 14.9 TOTAL RUNOFF(CFS) = 28.
 TC(MIN.) = 14.00
*****************
 FLOW PROCESS FROM NODE 122.00 TO NODE 123.00 IS CODE = 52
 >>>>COMPUTE NATURAL VALLEY CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA<
______
 ELEVATION DATA: UPSTREAM(FEET) = 325.00 DOWNSTREAM(FEET) = 236.00
 CHANNEL LENGTH THRU SUBAREA(FEET) = 1065.00
CHANNEL FLOW THRU SUBAREA(CFS) = 28.52
                                          CHANNEL SLOPE = 0.0836
 TRAVEL TIME(MIN.) = 1.86 Tc(MIN.) = 15.85
 LONGEST FLOWPATH FROM NODE 120.00 TO NODE
                                          123.00 =
                                                    2450.00 FEET.
 FLOW PROCESS FROM NODE 122.00 TO NODE 123.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.941
  *USER SPECIFIED(SUBAREA):
 VEGETATED SLOPES (STEEP) RUNOFF COEFFICIENT = .6000
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.6000
 SUBAREA AREA(ACRES) = 25.97 SUBAREA RUNOFF(CFS) = 45.83
TOTAL AREA(ACRES) = 40.9 TOTAL RUNOFF(CFS) = 72.
 TC(MIN.) = 15.85
 FLOW PROCESS FROM NODE 123.00 TO NODE 123.00 IS CODE = 1
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFIGUENCE<>
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 15.85
```

RAINFALL INTENSITY(INCH/HR) = 2.94

```
** CONFLUENCE DATA **
        RUNOFF
                     Tc
                             INTENSITY
 NUMBER
            (CFS)
                    (MIN.) (INCH/HOUR)
                   17.74 2.736
15.85 2.941
                                          73.12
           131.55
    1
            72.14
                  15.85
                               2.941
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
        RUNOFF TC INTENSITY (CFS) (MIN.) (INCH/HOUR)
 STREAM
 NUMBER
                          2.941
    1
           194.51
                   15.85
           198.66 17.74
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 198.66 Tc(MIN.) = 17.74
TOTAL AREA(ACRES) = 114.0
 LONGEST FLOWPATH FROM NODE
                           100.00 TO NODE
                                          123.00 =
                                                     3788.00 FEET.
 FLOW PROCESS FROM NODE 123.00 TO NODE 124.00 IS CODE = 52
 >>>>COMPUTE NATURAL VALLEY CHANNEL FLOW<>
 >>>>TRAVELTIME THRU SUBAREA<
-----
 ELEVATION DATA: UPSTREAM(FEET) = 236.00 DOWNSTREAM(FEET) =
 CHANNEL LENGTH THRU SUBAREA(FEET) = 1970.00 CHANNEL SLOPE = 0.0183
CHANNEL FLOW THRU SUBAREA(CFS) = 198.66
 FLOW VELOCITY(FEET/SEC) = 7.91 (PER LACFCD/RCFC&WCD HYDROLOGY MANUAL)
 TRAVEL TIME (MIN.) = 4.15 TC(MIN.) = 21.89
LONGEST FLOWPATH FROM NODE 100.00 TO NODE 124.00 =
*****
 FLOW PROCESS FROM NODE 123.00 TO NODE 124.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<>>>
______
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.389
  *USER SPECIFIED(SUBAREA):
 VEGETATED SLOPES (STEEP) RUNOFF COEFFICIENT = .6000
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.6000
 SUBAREA AREA(ACRES) = 19.96 SUBAREA RUNOFF(CFS) = 28.61
TOTAL AREA(ACRES) = 134.0 TOTAL RUNOFF(CFS) = 198.6
TC(MIN.) = 21.89
 NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE
******************
FLOW PROCESS FROM NODE 124.00 TO NODE 124.00 IS CODE = 1
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFIGUENCE<
_______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 21.89
RAINFALL INTENSITY(INCH/HR) = 2.39
 TOTAL STREAM AREA(ACRES) =
                          133.96
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                   198.66
***************
 FLOW PROCESS FROM NODE 130.00 TO NODE 131.00 IS CODE = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS
_______
 *USER SPECIFIED(SUBAREA):
 VEGETATED SLOPES (STEEP) RUNOFF COEFFICIENT = .6000
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 100.00
 UPSTREAM ELEVATION(FEET) = 650.00

DOWNSTREAM ELEVATION(FEET) = 640.00

ELEVATION DIFFERENCE(FEET) = 10.00
 ELEVATION DIFFERENCE(FEET) =
                              10.00
 URBAN SUBAREA OVERLAND TIME OF FLOW(MIN.) =
                                         4.178
 WARNING: THE MAXIMUM OVERLAND FLOW SLOPE, 10.%, IS USED IN To CALCULATION!
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.192
 NOTE: RAINFALL INTENSITY IS BASED ON Tc = 5-MINUTE.
 NOTE: KAINFALL ...

SUBAREA RUNOFF(CFS) = 1.75

1.75

0.47 TOTAL RUNOFF(CFS) =
 FLOW PROCESS FROM NODE 131.00 TO NODE 132.00 IS CODE = 53
 >>>>COMPUTE NATURAL MOUNTAIN CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA<
______
 ELEVATION DATA: UPSTREAM(FEET) = 640.00 DOWNSTREAM(FEET) = 450.00
 CHANNEL LENGTH THRU SUBAREA(FEET) = 1167.00 CHANNEL SLOPE = 0.1628
 CHANNEL FLOW THRU SUBAREA(CFS) =
                                  1.75
```

FLOW VELOCITY(FEET/SEC) = 2.72 (PER LACFCD/RCFC&WCD HYDROLOGY MANUAL)

```
TRAVEL TIME(MIN.) = 7.15 Tc(MIN.) = 11.33
 LONGEST FLOWPATH FROM NODE 130.00 TO NODE
                                        132.00 =
                                                   1267.00 FEET.
******************
 FLOW PROCESS FROM NODE 131.00 TO NODE 132.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
-----
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.654
 *USER SPECIFIED(SUBAREA):
 VEGETATED SLOPES (STEEP) RUNOFF COEFFICIENT = .6000
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.6000
 SUBAREA AREA(ACRES) = 18.69 SUBAREA RUNOFF(CFS) = 40.97
                      19.2 TOTAL RUNOFF(CFS) =
 TOTAL AREA(ACRES) =
 TC(MIN.) = 11.33
*******************
 FLOW PROCESS FROM NODE 132.00 TO NODE 133.00 IS CODE = 52
 >>>>COMPUTE NATURAL VALLEY CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA<
______
 ELEVATION DATA: UPSTREAM(FEET) = 450.00 DOWNSTREAM(FEET) = 360.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 1271.00 CHANNEL SLOPE = 0.0708 CHANNEL FLOW THRU SUBAREA(CFS) = 42.00
 FLOW VELOCITY(FEET/SEC) = 9.80 (PER LACFCD/RCFC&WCD HYDROLOGY MANUAL)
TRAVEL TIME(MIN.) = 2.16 Tc(MIN.) = 13.49
LONGEST FLOWPATH FROM NODE 130.00 TO NODE 133.00 = 2538.00 FEE
                                                    2538.00 FEET.
*******************
 FLOW PROCESS FROM NODE 132.00 TO NODE 133.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.264
 *USER SPECIFIED(SUBAREA):
 VEGETATED SLOPES (STEEP) RUNOFF COEFFICIENT = .6000
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.6000
 SUBAREA AREA(ACRES) = 25.58 SUBAREA RUNOFF(CFS) = 50.10
                      44.7 TOTAL RUNOFF(CFS) =
 TOTAL AREA(ACRES) =
 TC(MIN.) = 13.49
*******************
 FLOW PROCESS FROM NODE 133.00 TO NODE 124.00 IS CODE = 53
 >>>>COMPUTE NATURAL MOUNTAIN CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA<
______
 ELEVATION DATA: UPSTREAM(FEET) = 360.00 DOWNSTREAM(FEET) = 200.00
 CHANNEL LENGTH THRU SUBAREA(FEET) = 1666.00
CHANNEL FLOW THRU SUBAREA(CFS) = 87.63
                                         CHANNEL SLOPE = 0.0960
 CHANNEL FLOW THRU SUBAREA(CFS) =
 TRAVEL TIME(MIN.) = 3.61 Tc(MIN.) = 17.10

LONGEST FLOWPATH FROM NODE 130.00 TO NODE 124.00 = 4204.00 FEE
                                                   4204.00 FEET.
*****
 FLOW PROCESS FROM NODE 133.00 TO NODE 124.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.802
 *USER SPECIFIED(SUBAREA):
 VEGETATED SLOPES (STEEP) RUNOFF COEFFICIENT = .6000
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.6000
 SUBAREA AREA(ACRES) = 22.68 SUBAREA RUNOFF(CFS) = 38.12
TOTAL AREA(ACRES) = 67.4 TOTAL RUNOFF(CFS) = 113.
 TOTAL AREA(ACRES) =
 TC(MIN.) =
           17.10
 FLOW PROCESS FROM NODE 124.00 TO NODE 124.00 IS CODE = 1
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFIGUENCE<>
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 17.10
RAINFALL INTENSITY(INCH/HR) = 2.80
TOTAL STREAM AREA(ACRES) = 67.42
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                  113.33
 ** CONFLUENCE DATA **
```

17.10 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS.

Tc

21.89 2.389 --- 2.802

TC INTENSITY (MIN.) (INCH/HOUR) (ACRE)

2.802

INTENSITY

133.96

STREAM

NUMBER

1 2.

RUNOFF

198.66

113.33

(CFS)

** PEAK FLOW RATE TABLE **
STREAM RUNOFF TC INTENSITY
NUMBER (CFS) (MIN.) (INCH/HOUR)

1 282.73 17.10 2.802
2 295.29 21.89 2.389

COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
PEAK FLOW RATE(CFS) = 295.29 TC(MIN.) = 21.89
TOTAL AREA(ACRES) = 201.4
LONGEST FLOWPATH FROM NODE 100.00 TO NODE 124.00 = 5758.00 FEET.

END OF STUDY SUMMARY:
TOTAL AREA(ACRES) = 201.4 TC(MIN.) = 21.89
PEAK FLOW RATE(CFS) = 295.29

END OF RATIONAL METHOD ANALYSIS

CHAPTER 3

HYDROLOGIC ANALYSIS

3.3 – 50-Year Developed Condition AES Model Output

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 2003,1985,1981 HYDROLOGY MANUAL

(c) Copyright 1982-2015 Advanced Engineering Software (aes) Ver. 22.0 Release Date: 07/01/2015 License ID 1239

Analysis prepared by:

```
************************ DESCRIPTION OF STUDY ********************
* Otay Ranch Village 4 South
* 50-year return interval
* DLN:0924, W.O. 3206-0002
 FILE NAME: R:\0924\HYD\CALCS\AES\PR50.DAT
 TIME/DATE OF STUDY: 11:34 06/22/2016
 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
 2003 SAN DIEGO MANUAL CRITERIA
 USER SPECIFIED STORM EVENT(YEAR) = 50.00
 6-HOUR DURATION PRECIPITATION (INCHES) =
 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00
 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.90
 SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD
 NOTE: USE MODIFIED RATIONAL METHOD PROCEDURES FOR CONFLUENCE ANALYSIS
  *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
     HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING
     WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR
    (FT) (FT) SIDE / SIDE / WAY (FT) (FT) (FT) (n)
=== ===== =====
                       30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0313 0.167 0.0150 17.0 10.0 0.020/0.020/0.020 0.50 1.50 0.0313 0.125 0.0150 1.50 0.0313 0.125 0.0150
 1

      20.0
      12.0
      0.020/0.020/0.020
      0.50
      1.50
      0.0313
      0.125
      0.0150

      16.0
      10.0
      0.020/0.020/0.020
      0.50
      1.50
      0.0313
      0.125
      0.0150

      26.0
      18.0
      0.020/0.020/0.020
      0.50
      1.50
      0.0313
      0.125
      0.0150

      44.0
      12.0
      0.020/0.020/0.020
      0.50
      1.50
      0.0313
      0.125
      0.0150

 5
 GLOBAL STREET FLOW-DEPTH CONSTRAINTS:
   1. Relative Flow-Depth = 0.50 FEET
      as (Maximum Allowable Street Flow Depth) - (Top-of-Curb)
    2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)
  *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
  OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
*************************
 FLOW PROCESS FROM NODE 100.00 TO NODE 101.00 IS CODE = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
 *USER SPECIFIED(SUBAREA):
 PAVED SURFACE RUNOFF COEFFICIENT = .8500
 INITIAL SUBAREA FLOW-LENGTH(FEET) =
 UPSTREAM ELEVATION(FEET) = 437.63
 DOWNSTREAM ELEVATION(FEET) = 437.02
ELEVATION DIFFERENCE(FEET) = 0.61
 URBAN SUBAREA OVERLAND TIME OF FLOW(MIN.) = 3.467
   50 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.612
 NOTE: RAINFALL INTENSITY IS BASED ON To = 5-MINUTE.
 SUBAREA RUNOFF(CFS) =
                             1.96
 TOTAL AREA(ACRES) =
                           0.41 TOTAL RUNOFF(CFS) =
******************
 FLOW PROCESS FROM NODE 101.00 TO NODE 102.00 IS CODE = 62
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA <>>>
 >>>>(STREET TABLE SECTION # 6 USED) <<<<
```

```
______
 UPSTREAM ELEVATION(FEET) = 437.02 DOWNSTREAM ELEVATION(FEET) = 432.91
 STREET LENGTH(FEET) = 413.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 44.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 12.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL (DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) =
                                                      0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0150
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.33
   HALFSTREET FLOOD WIDTH(FEET) =
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.24
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.73
 STREET FLOW TRAVEL TIME(MIN.) = 3.07 Tc(MIN.) =
  50 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.722
 *USER SPECIFIED(SUBAREA):
 PAVED SURFACE RUNOFF COEFFICIENT = .8500
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.850
 SUBAREA AREA(ACRES) = 1.51 SUBAREA RUNOFF(CFS) = 6.06
 TOTAL AREA(ACRES) =
                              PEAK FLOW RATE(CFS) =
                      1.9
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.37 HALFSTREET FLOOD WIDTH(FEET) = 12.01
 FLOW VELOCITY(FEET/SEC.) = 2.47 DEPTH*VELOCITY(FT*FT/SEC.) = 0.90
 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 102.00 =
*******************
FLOW PROCESS FROM NODE 102.00 TO NODE 103.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <>>>
------
 ELEVATION DATA: UPSTREAM(FEET) = 428.00 DOWNSTREAM(FEET) = 427.00
 FLOW LENGTH(FEET) = 50.00 MANNING'S N = 0.013
 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 9.5 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 8.16
 ESTIMATED PIPE DIAMETER(INCH) = 18.00
                                  NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) =
 PIPE TRAVEL TIME(MIN.) = 0.10 Tc(MIN.) =
 LONGEST FLOWPATH FROM NODE
                        100.00 TO NODE
                                       103.00 =
                                                  523.00 FEET.
***********************
 FLOW PROCESS FROM NODE 102.00 TO NODE 103.00 IS CODE = 10
     _____
 >>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 1 <<<<
______
************************
 FLOW PROCESS FROM NODE 110.00 TO NODE 111.00 IS CODE = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
 *USER SPECIFIED(SUBAREA):
 VEGETATED SLOPES (STEEP) RUNOFF COEFFICIENT = .6000
 INITIAL SUBAREA FLOW-LENGTH (FEET) = 100.00
 UPSTREAM ELEVATION(FEET) = 525.00
 DOWNSTREAM ELEVATION(FEET) = 515.00
 ELEVATION DIFFERENCE(FEET) =
                           10.00
 URBAN SUBAREA OVERLAND TIME OF FLOW(MIN.) = 4.178
 WARNING: THE MAXIMUM OVERLAND FLOW SLOPE, 10.%, IS USED IN To CALCULATION!
  50 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.612
 NOTE: RAINFALL INTENSITY IS BASED ON To = 5-MINUTE.
 NOTE: KAINFALL ...

SUBAREA RUNOFF(CFS) = 0.37

0.11 TOTAL RUNOFF(CFS) =
************************
 FLOW PROCESS FROM NODE 111.00 TO NODE 112.00 IS CODE = 31
```

```
>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << <<
______
 ELEVATION DATA: UPSTREAM(FEET) = 515.00 DOWNSTREAM(FEET) = 451.00
 FLOW LENGTH(FEET) = 548.00 MANNING'S N = 0.013
 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 1.3 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 6.36
                                 NUMBER OF PIPES = 1
 ESTIMATED PIPE DIAMETER(INCH) = 18.00
 PIPE-FLOW(CFS) = 0.37
 PIPE TRAVEL TIME(MIN.) = 1.44
                          Tc(MIN.) =
 LONGEST FLOWPATH FROM NODE
                      110.00 TO NODE
                                    112.00 =
************************
 FLOW PROCESS FROM NODE 111.00 TO NODE 112.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
  50 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.208
 *USER SPECIFIED(SUBAREA):
 VEGETATED SLOPES (STEEP) RUNOFF COEFFICIENT = .6000
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.6000
 SUBAREA AREA(ACRES) = 2.16 SUBAREA RUNOFF(CFS) = 6.75
TOTAL AREA(ACRES) = 2.3 TOTAL RUNOFF(CFS) = 7.0
 TC(MIN.) = 5.61
*******************
 FLOW PROCESS FROM NODE 112.00 TO NODE 117.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << <<
______
 ELEVATION DATA: UPSTREAM(FEET) = 446.00 DOWNSTREAM(FEET) = 435.00
 FLOW LENGTH(FEET) = 254.00 MANNING'S N = 0.013
 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 7.3 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 10.63
 ESTIMATED PIPE DIAMETER(INCH) = 18.00
                                 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 7.09
 PIPE TRAVEL TIME(MIN.) = 0.40
                           Tc(MIN.) =
                                      6.01
                       110.00 TO NODE 117.00 =
 LONGEST FLOWPATH FROM NODE
                                              902.00 FEET.
*************************
 FLOW PROCESS FROM NODE 117.00 TO NODE 117.00 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <>>>
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 6.01
RAINFALL INTENSITY(INCH/HR) = 4.98
                      2.27
 TOTAL STREAM AREA(ACRES) =
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                7.09
************************
 FLOW PROCESS FROM NODE 115.00 TO NODE 116.00 IS CODE = 21
>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
 *USER SPECIFIED(SUBAREA):
 DENSE RESIDENTIAL (R2,R3) RUNOFF COEFFICIENT = .7500
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 65.00
 UPSTREAM ELEVATION(FEET) = 526.45
 DOWNSTREAM ELEVATION(FEET) = 525.80
ELEVATION DIFFERENCE(FEET) = 0.65
 URBAN SUBAREA OVERLAND TIME OF FLOW(MIN.) = 5.079
  50 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.555
 SUBAREA RUNOFF(CFS) = 1.12
 TOTAL AREA(ACRES) =
                   0.27
                         TOTAL RUNOFF(CFS) =
FLOW PROCESS FROM NODE 116.00 TO NODE 117.00 IS CODE = 61
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STANDARD CURB SECTION USED) <>>>
______
```

```
STREET LENGTH(FEET) = 721.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 16.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 8.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.27
   HALFSTREET FLOOD WIDTH(FEET) = 7.21
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 6.65
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.80
 STREET FLOW TRAVEL TIME(MIN.) = 1.81 Tc(MIN.) =
   50 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.565
 *USER SPECIFIED(SUBAREA):
 DENSE RESIDENTIAL (R2,R3) RUNOFF COEFFICIENT = .7500
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.750
 SUBAREA AREA(ACRES) = 4.28 SUBAREA RUNOFF(CFS) = 14.65
TOTAL AREA(ACRES) = 4.6 PEAK FLOW RATE(CFS) =
                                 PEAK FLOW RATE(CFS) = 15.58
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.32 HALFSTREET FLOOD WIDTH(FEET) = 9.53
 FLOW VELOCITY(FEET/SEC.) = 7.59 DEPTH*VELOCITY(FT*FT/SEC.) = 2.40 LONGEST FLOWPATH FROM NODE 115.00 TO NODE 117.00 = 786.00 FE
                                                        786.00 FEET.
 FLOW PROCESS FROM NODE 117.00 TO NODE 117.00 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFIJIENCE<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 6.89
RAINFALL INTENSITY(INCH/HR) = 4.57
 TOTAL STREAM AREA(ACRES) = 4.55
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                    15.58
 ** CONFLUENCE DATA **
 STREAM RUNOFF
                     Tc
                             INTENSITY
 NUMBER
           (CFS)
                     (MIN.) (INCH/HOUR) (ACRE)
            7.09
                    6.01 4.983
                                           2.27
   1
           15.58 6.89
     2
                               4.565
                                             4.55
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
 STREAM RUNOFF TC INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR)
                  6.01 4.983
6.89 4.565
            20.70
    1
            22.08
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 22.08 Tc(MIN.) = TOTAL AREA(ACRES) = 6.8
                                           6.89
 LONGEST FLOWPATH FROM NODE 110.00 TO NODE 117.00 =
                                                       902.00 FEET.
 FLOW PROCESS FROM NODE 117.00 TO NODE 118.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
-----
 ELEVATION DATA: UPSTREAM(FEET) = 433.00 DOWNSTREAM(FEET) = 427.00
 FLOW LENGTH(FEET) = 272.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 21.0 INCH PIPE IS 17.0 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 10.58
 ESTIMATED PIPE DIAMETER(INCH) = 21.00
                                      NUMBER OF PIPES = 1
```

UPSTREAM ELEVATION(FEET) = 525.80 DOWNSTREAM ELEVATION(FEET) = 438.25

```
PIPE-FLOW(CFS) =
                   22.08
 PIPE TRAVEL TIME(MIN.) = 0.43 Tc(MIN.) =
                                           7.31
 LONGEST FLOWPATH FROM NODE 110.00 TO NODE 118.00 = 1174.00 FEET.
*******************
 FLOW PROCESS FROM NODE 118.00 TO NODE 118.00 IS CODE = 1
>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <--
______
 TOTAL NUMBER OF STREAMS = 3
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 7.31
 RAINFALL INTENSITY(INCH/HR) = 4.39
TOTAL STREAM AREA(ACRES) = 6.82
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                  22.08
 FLOW PROCESS FROM NODE 120.00 TO NODE 121.00 IS CODE = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
 *USER SPECIFIED(SUBAREA):
 DENSE RESIDENTIAL (R2,R3) RUNOFF COEFFICIENT = .7500
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 65.00
 UPSTREAM ELEVATION(FEET) = 451.55
 DOWNSTREAM ELEVATION(FEET) = 450.90
ELEVATION DIFFERENCE(FEET) = 0.65
 URBAN SUBAREA OVERLAND TIME OF FLOW(MIN.) =
                                        5.079
 WARNING: INITIAL SUBAREA FLOW PATH LENGTH IS GREATER THAN
         THE MAXIMUM OVERLAND FLOW LENGTH = 65.00
         (Reference: Table 3-1B of Hydrology Manual)
         THE MAXIMUM OVERLAND FLOW LENGTH IS USED IN To CALCULATION!
  50 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.555
 SUBAREA RUNOFF(CFS) = 1.29
                     0.31 TOTAL RUNOFF(CFS) =
 TOTAL AREA(ACRES) =
                                                 1.29
***********************
 FLOW PROCESS FROM NODE 121.00 TO NODE 122.00 IS CODE = 61
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STANDARD CURB SECTION USED) <>>>
------
 UPSTREAM ELEVATION(FEET) = 446.20 DOWNSTREAM ELEVATION(FEET) = 430.50
 STREET LENGTH(FEET) = 446.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 16.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 8.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) =
                                                          0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.29
   HALFSTREET FLOOD WIDTH(FEET) =
                               8.28
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.81
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.11
 STREET FLOW TRAVEL TIME(MIN.) = 1.95 Tc(MIN.) =
   50 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.504
  *USER SPECIFIED(SUBAREA):
 DENSE RESIDENTIAL (R2,R3) RUNOFF COEFFICIENT = .7500
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.750
 SUBAREA AREA(ACRES) = 2.84 SUBAREA RUNOFF(CFS) = 9.59
 TOTAL AREA(ACRES) =
                                PEAK FLOW RATE(CFS) =
                       3.1
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.34 HALFSTREET FLOOD WIDTH(FEET) = 10.53
 FLOW VELOCITY(FEET/SEC.) = 4.34 DEPTH*VELOCITY(FT*FT/SEC.) = 1.46
 LONGEST FLOWPATH FROM NODE 120.00 TO NODE 122.00 =
                                                    511.00 FEET.
*******************
```

FLOW PROCESS FROM NODE 121.00 TO NODE 122.00 IS CODE = 81

```
>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
   50 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.504
 *USER SPECIFIED(SUBAREA):
 VEGETATED SLOPES (HILLY) RUNOFF COEFFICIENT = .6000
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.7402
 SUBAREA AREA(ACRES) = 0.22 SUBAREA RUNOFF(CFS) = 0.59
TOTAL AREA(ACRES) = 3.4 TOTAL RUNOFF(CFS) = 11.
 TC(MIN.) =
             7.03
*********************
 FLOW PROCESS FROM NODE 122.00 TO NODE 118.00 IS CODE = 1
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <>>>
______
 TOTAL NUMBER OF STREAMS = 3
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 7.03 RAINFALL INTENSITY(INCH/HR) = 4.50 TOTAL STREAM AREA(ACRES) = 3.37
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                   11.24
*******************
 FLOW PROCESS FROM NODE 125.00 TO NODE 126.00 IS CODE = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
 *USER SPECIFIED(SUBAREA):
 DENSE RESIDENTIAL (R2,R3) RUNOFF COEFFICIENT = .7500
 INITIAL SUBAREA FLOW-LENGTH(FEET) =
                                   65.00
 UPSTREAM ELEVATION(FEET) = 453.85
 DOWNSTREAM ELEVATION(FEET) = 453.20
ELEVATION DIFFERENCE(FEET) = 0.65
 URBAN SUBAREA OVERLAND TIME OF FLOW(MIN.) =
                                        5.079
 WARNING: INITIAL SUBAREA FLOW PATH LENGTH IS GREATER THAN
         THE MAXIMUM OVERLAND FLOW LENGTH = 65.00
         (Reference: Table 3-1B of Hydrology Manual)
         THE MAXIMUM OVERLAND FLOW LENGTH IS USED IN TC CALCULATION!
   50 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.555
 SUBAREA RUNOFF(CFS) =
                       0.37
 TOTAL AREA(ACRES) =
                      0.09
                            TOTAL RUNOFF(CFS) =
*******************
 FLOW PROCESS FROM NODE 126.00 TO NODE 127.00 IS CODE = 61
______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STANDARD CURB SECTION USED) < < < <
______
 UPSTREAM ELEVATION(FEET) = 453.20 DOWNSTREAM ELEVATION(FEET) = 430.50
 STREET LENGTH(FEET) = 655.00
                             CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 16.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK (FEET) = 8.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                    5.18
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.28
   HALFSTREET FLOOD WIDTH(FEET) =
                                7.67
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.66
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.02
                                               8.06
 STREET FLOW TRAVEL TIME(MIN.) = 2.98 Tc(MIN.) =
   50 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.125
 *USER SPECIFIED(SUBAREA):
 DENSE RESIDENTIAL (R2,R3) RUNOFF COEFFICIENT = .7500
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.750
SUBAREA AREA(ACRES) = 3.06
SUBAREA RUNOFF(CFS) = 9.47
TOTAL AREA(ACRES) = 3.1
PEAK FLOW RATE(CFS) =
```

```
END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.33 HALFSTREET FLOOD WIDTH(FEET) = 10.16
 FLOW VELOCITY(FEET/SEC.) = 4.24 DEPTH*VELOCITY(FT*FT/SEC.) = 1.40
 LONGEST FLOWPATH FROM NODE 125.00 TO NODE 127.00 =
                                                          720.00 FEET.
************************
 FLOW PROCESS FROM NODE 127.00 TO NODE 118.00 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <><
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES << < <
______
 TOTAL NUMBER OF STREAMS = 3
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE:
 TIME OF CONCENTRATION(MIN.) = 8.06
 RAINFALL INTENSITY(INCH/HR) =
 TOTAL STREAM AREA(ACRES) = 3.15
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                      9.74
 ** CONFLUENCE DATA **
 STREAM RUNOFF TC NUMBER (CFS) (MIN.)
                              INTENSITY
                    (MIN.) (INCH/HOUR) (ACRE)
    1

      22.08
      7.31
      4.391

      11.24
      7.03
      4.504

                                            6.82
     2
                                               3.37
            9.74 8.06
                               4.125
                                              3.15
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 3 STREAMS.
 ** PEAK FLOW RATE TABLE **
 STREAM RUNOFF TC INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR)
           41.26 7.03
41.88 7.31
40.77 8.06
    1
                     7.03 4.504
     2
                                4.391
                              4.125
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 41.88 Tc(MIN.) = 7.31 TOTAL AREA(ACRES) = 13.3
                         13.3
 LONGEST FLOWPATH FROM NODE 110.00 TO NODE 118.00 = 1174.00 FEET.
 FLOW PROCESS FROM NODE 118.00 TO NODE 103.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << <<
______
 ELEVATION DATA: UPSTREAM(FEET) = 427.00 DOWNSTREAM(FEET) = 426.00
 FLOW LENGTH(FEET) = 130.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 33.0 INCH PIPE IS 25.7 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 8.43
ESTIMATED PIPE DIAMETER(INCH) = 33.00
                                        NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 41.88
 PIPE TRAVEL TIME(MIN.) = 0.26
                                Tc(MIN.) =
                                               7.57
 LONGEST FLOWPATH FROM NODE 110.00 TO NODE 103.00 = 1304.00 FEET.
********************
 FLOW PROCESS FROM NODE 130.00 TO NODE 130.00 IS CODE = 11
 >>>>CONFLUENCE MEMORY BANK # 1 WITH THE MAIN-STREAM MEMORY<
______
 ** MAIN STREAM CONFLUENCE DATA **
 STREAM RUNOFF TC INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE)
 NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE)  1 \quad 41.88 \quad 7.57 \qquad 4.294 \qquad 13.34 \\  \text{LONGEST FLOWPATH FROM NODE} \qquad 110.00 \text{ TO NODE} \qquad 130.00 = \qquad 1304.00 \text{ FEET.} 
 ** MEMORY BANK \# 1 CONFLUENCE DATA **
 STREAM RUNOFF TC INTENSITY
                                           AREA
           (CFS) (MIN.) (INCH/HOUR) (ACRE)
7.71 6.64 4.674 1.92
 NUMBER
 1 7.71 6.64 4.674 1.92
LONGEST FLOWPATH FROM NODE 100.00 TO NODE 130.00 = 523.00 FEET.
  ** PEAK FLOW RATE TABLE **
 STREAM RUNOFF TC INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR)
```

```
44.42 6.64
          48.95
                    7.57
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 48.95 Tc(MIN.) = TOTAL AREA(ACRES) = 15.3
 TOTAL AREA(ACRES) =
 FLOW PROCESS FROM NODE 103.00 TO NODE 103.00 IS CODE = 12
______
 >>>> CLEAR MEMORY BANK # 1 <<<<<
______
**********************
 FLOW PROCESS FROM NODE 103.00 TO NODE 128.00 IS CODE = 31
 >>>>COMPLITE PIPE-FIOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <>>>
ELEVATION DATA: UPSTREAM(FEET) = 426.00 DOWNSTREAM(FEET) = 422.00
 FLOW LENGTH(FEET) = 460.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 36.0 INCH PIPE IS 25.0 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 9.33
 ESTIMATED PIPE DIAMETER(INCH) = 36.00
                                    NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 48.95
 PIPE TRAVEL TIME(MIN.) = 0.82 Tc(MIN.) = LONGEST FLOWPATH FROM NODE 110.00 TO NODE
                                          8.39
                         110.00 TO NODE 128.00 =
                                                  1764 00 FEET.
**************************
 FLOW PROCESS FROM NODE 128.00 TO NODE 128.00 IS CODE = 1
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <--
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 8.39
 RAINFALL INTENSITY(INCH/HR) = 4.02
 TOTAL STREAM AREA(ACRES) = 15.26
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                  48.95
 FLOW PROCESS FROM NODE 130.00 TO NODE 131.00 IS CODE = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
 *USER SPECIFIED(SUBAREA):
 DENSE RESIDENTIAL (R2,R3) RUNOFF COEFFICIENT = .7500
 INITIAL SUBAREA FLOW-LENGTH(FEET) =
 UPSTREAM ELEVATION(FEET) = 444.15
 DOWNSTREAM ELEVATION(FEET) = 443.50
ELEVATION DIFFERENCE(FEET) = 0.65
 URBAN SUBAREA OVERLAND TIME OF FLOW(MIN.) =
                                       5.079
 WARNING: INITIAL SUBAREA FLOW PATH LENGTH IS GREATER THAN
         THE MAXIMIM OVERLAND FLOW LENGTH =
                                        65.00
         (Reference: Table 3-1B of Hydrology Manual)
         THE MAXIMUM OVERLAND FLOW LENGTH IS USED IN To CALCULATION!
   50 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.555
 SUBAREA RUNOFF(CFS) = 0.42
                           TOTAL RUNOFF(CFS) =
 TOTAL AREA(ACRES) =
                     0.10
                                                 0.42
*************************
 FLOW PROCESS FROM NODE 131.00 TO NODE 132.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <>>>
______
 ELEVATION DATA: UPSTREAM(FEET) = 435.80 DOWNSTREAM(FEET) = 428.00
 FLOW LENGTH(FEET) = 995.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 2.6 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 2.58
 ESTIMATED PIPE DIAMETER(INCH) = 18.00
                                    NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 0.42
 PIPE TRAVEL TIME(MIN.) = 6.43 Tc(MIN.) = 11.51
LONGEST FLOWPATH FROM NODE 130.00 TO NODE 132.00 = 1060.00 FEET.
```

4.674

```
*******************
 FLOW PROCESS FROM NODE 131.00 TO NODE 132.00 IS CODE = 81
______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
   50 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.278
 *USER SPECIFIED(SUBAREA):
 DENSE RESIDENTIAL (R2.R3) RUNOFF COEFFICIENT = .7500
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.7500
 SUBAREA AREA(ACRES) = 6.96 SUBAREA RUNOFF(CFS) = 17.11
TOTAL AREA(ACRES) = 7.1 TOTAL RUNOFF(CFS) = 17.1
 TC(MIN.) = 11.51
************************
 FLOW PROCESS FROM NODE 132.00 TO NODE 128.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <>>>
ELEVATION DATA: UPSTREAM(FEET) = 438.50 DOWNSTREAM(FEET) = 422.00
 FLOW LENGTH(FEET) = 115.00 MANNING'S N = 0.013
 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 8.6 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 20.91
 ESTIMATED PIPE DIAMETER(INCH) = 18.00
                                   NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) =
                  17.36
 PIPE TRAVEL TIME(MIN.) = 0.09
                             Tc(MIN.) = 11.60
 LONGEST FLOWPATH FROM NODE 130.00 TO NODE
                                         128.00 =
                                                  1175.00 FEET.
********************
 FLOW PROCESS FROM NODE 128.00 TO NODE 128.00 IS CODE = 1
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <---
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES << < <
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 11.60
 RAINFALL INTENSITY(INCH/HR) =
 TOTAL STREAM AREA(ACRES) = 7.06
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                 17.36
 ** CONFLUENCE DATA **
 STREAM RUNOFF
                   Tc
                           INTENSITY
          (CFS) (MIN.) (INCH/HOUR)
48.95 8.39 4.018
17.36 11.60 3.261
 NUMBER
                                       (ACRE)
                                    15.26
    1
    2
                                         7.06
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
 STREAM RUNOFF Tc
                           INTENSITY
                  (MIN.) (INCH/HOUR)
 NUMBER
          (CFS)
          61.51 8.39
57.08 11.60
                          4.018
3.261
    1
    2.
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 61.51 Tc(MIN.) = TOTAL AREA(ACRES) = 22.3
                                         8.39
                                       128.00 =
 LONGEST FLOWPATH FROM NODE 110.00 TO NODE
 FLOW PROCESS FROM NODE 128.00 TO NODE 137.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
_____
 ELEVATION DATA: UPSTREAM(FEET) = 422.00 DOWNSTREAM(FEET) = 414.00
 FLOW LENGTH(FEET) = 610.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 36.0 INCH PIPE IS 25.5 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 11.50
 ESTIMATED PIPE DIAMETER(INCH) = 36.00
                                    NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 61.51
 PIPE TRAVEL TIME(MIN.) = 0.88 Tc(MIN.) = 9.28
LONGEST FLOWPATH FROM NODE 110.00 TO NODE 137.00 = 2374.00 FEET.
```

```
********************
 FLOW PROCESS FROM NODE 137.00 TO NODE 137.00 IS CODE = 1
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <---
______
 TOTAL NUMBER OF STREAMS = 2
 CONFIJIENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 9.28
RAINFALL INTENSITY(INCH/HR) = 3.77
TOTAL STREAM AREA(ACRES) = 22.32
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                   61.51
***********************
 FLOW PROCESS FROM NODE 135.00 TO NODE 136.00 IS CODE = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
 *USER SPECIFIED(SUBAREA):
 PAVED SURFACE RUNOFF COEFFICIENT = .8500
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 103.00
 UPSTREAM ELEVATION(FEET) = 432.50
 DOWNSTREAM ELEVATION(FEET) = 431.60
ELEVATION DIFFERENCE(FEET) = 0.90
 URBAN SUBAREA OVERLAND TIME OF FLOW(MIN.) =
                                        3.568
 WARNING: INITIAL SUBAREA FLOW PATH LENGTH IS GREATER THAN
         THE MAXIMUM OVERLAND FLOW LENGTH = 57.48
         (Reference: Table 3-1B of Hydrology Manual)
         THE MAXIMUM OVERLAND FLOW LENGTH IS USED IN To CALCULATION!
   50 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.612
 NOTE: RAINFALL INTENSITY IS BASED ON Tc = 5-MINUTE.
 SUBAREA RUNOFF(CFS) =
                       1.19
 TOTAL AREA(ACRES) =
                      0.25 TOTAL RUNOFF(CFS) =
*********************
 FLOW PROCESS FROM NODE 136.00 TO NODE 137.00 IS CODE = 61
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STANDARD CURB SECTION USED) < < < <
______
 UPSTREAM ELEVATION(FEET) = 430.75 DOWNSTREAM ELEVATION(FEET) = 418.50
 STREET LENGTH(FEET) = 1000.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 44.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 22.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                    8.12
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.36
   HALFSTREET FLOOD WIDTH(FEET) = 11.71
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.72
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.98
 STREET FLOW TRAVEL TIME(MIN.) = 6.12 Tc(MIN.) =
                                              9.69
   50 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.663
 *USER SPECIFIED(SUBAREA):
 COMMERCIAL AREA RUNOFF COEFFICIENT = .8500
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.850
 SUBAREA AREA(ACRES) = 4.30 SUBAREA RUNOFF(CFS) = 13.39
 TOTAL AREA(ACRES) =
                                 PEAK FLOW RATE(CFS) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.42 HALFSTREET FLOOD WIDTH(FEET) = 14.75
 FLOW VELOCITY(FEET/SEC.) = 3.09 DEPTH*VELOCITY(FT*FT/SEC.) = 1.30
 LONGEST FLOWPATH FROM NODE
                         135.00 TO NODE
                                          137.00 =
                                                   1103.00 FEET.
***********************
 FLOW PROCESS FROM NODE 137.00 TO NODE 137.00 IS CODE = 1
```

>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <--

```
>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES << < <
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 9.69
 RAINFALL INTENSITY(INCH/HR) =
 TOTAL STREAM AREA(ACRES) =
                          4.55
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                 14.17
 ** CONFLUENCE DATA **
 STREAM RUNOFF
                    Tc
                           INTENSITY
 NUMBER
          (CFS)
                   (MIN.) (INCH/HOUR) (ACRE)
    1
           61.51
                   9.28 3.767
                                       22.32
          14.17 9.69
                            3.663
                                         4.55
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
 STREAM RUNOFF TC INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR)
           75.08 9.28 3.767
73.99 9.69 3.663
    1
    2
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 75.08 Tc(MIN.) = TOTAL AREA(ACRES) = 26.9
                                        9.28
 LONGEST FLOWPATH FROM NODE 110.00 TO NODE
                                       137.00 =
                                                  2374.00 FEET.
********************
 FLOW PROCESS FROM NODE 137.00 TO NODE 138.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 412.00 DOWNSTREAM(FEET) = 411.00
 FLOW LENGTH(FEET) = 75.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 39.0 INCH PIPE IS 27.1 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) = 12.19
 ESTIMATED PIPE DIAMETER(INCH) = 39.00
                                   NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) =
                  75.08
 PIPE TRAVEL TIME(MIN.) = 0.10 Tc(MIN.) =
                                         9.38
 LONGEST FLOWPATH FROM NODE
                        110.00 TO NODE
                                        138.00 =
 FLOW PROCESS FROM NODE 138.00 TO NODE 138.00 IS CODE = 10
 >>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 1 <<<<
______
 FLOW PROCESS FROM NODE 140.00 TO NODE 141.00 IS CODE = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS
______
 *USER SPECIFIED(SUBAREA):
 VEGETATED SLOPES (STEEP) RUNOFF COEFFICIENT = .6000
 INITIAL SUBAREA FLOW-LENGTH (FEET) = 100.00
                        460.00
 UPSTREAM ELEVATION(FEET) =
                          450.00
 DOWNSTREAM ELEVATION(FEET) =
 ELEVATION DIFFERENCE(FEET) =
                            10.00
 URBAN SUBAREA OVERLAND TIME OF FLOW(MIN.) = 4.178
WARNING: THE MAXIMUM OVERLAND FLOW SLOPE, 10.%, IS USED IN TO CALCULATION!
  50 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.612
 NOTE: RAINFALL INTENSITY IS BASED ON TC = 5-MINUTE.
 SUBAREA RUNOFF(CFS) =
                       0.67
 TOTAL AREA(ACRES) =
                    0.20 TOTAL RUNOFF(CFS) =
********************
 FLOW PROCESS FROM NODE 141.00 TO NODE 142.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <>>>
ELEVATION DATA: UPSTREAM(FEET) = 450.00 DOWNSTREAM(FEET) = 425.00
 FLOW LENGTH(FEET) = 652.00 MANNING'S N = 0.013
```

```
ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 2.3 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 5.14
 ESTIMATED PIPE DIAMETER(INCH) = 18.00
                                  NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) =
                  0.67
 PIPE TRAVEL TIME(MIN.) = 2.11
                             Tc(MIN.) =
 LONGEST FLOWPATH FROM NODE
                        140.00 TO NODE
                                      142.00 =
*********************
 FLOW PROCESS FROM NODE 141.00 TO NODE 142.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
   50 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.839
 *USER SPECIFIED(SUBAREA):
 VEGETATED SLOPES (STEEP) RUNOFF COEFFICIENT = .6000
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.6000
 SUBAREA AREA(ACRES) = 2.56 SUBAREA RUNOFF(CFS) = TOTAL AREA(ACRES) = 2.8 TOTAL RUNOFF(CFS) =
 TC(MIN.) =
*********************
 FLOW PROCESS FROM NODE 142.00 TO NODE 147.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << <<
______
 ELEVATION DATA: UPSTREAM(FEET) = 420.00 DOWNSTREAM(FEET) = 417.00
 FLOW LENGTH(FEET) = 271.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 11.8 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 6.54
 ESTIMATED PIPE DIAMETER(INCH) = 18.00
                                  NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) =
                  8.01
 PIPE TRAVEL TIME(MIN.) = 0.69 Tc(MIN.) =
 LONGEST FLOWPATH FROM NODE 140.00 TO NODE 147.00 =
                                               1023.00 FEET.
***********************
 FLOW PROCESS FROM NODE 147.00 TO NODE 147.00 IS CODE = 1
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <---
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 6.98
 RAINFALL INTENSITY(INCH/HR) = 4.52
TOTAL STREAM AREA(ACRES) = 2.76
                         4.52
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                8.01
******************
 FLOW PROCESS FROM NODE 145.00 TO NODE 146.00 IS CODE = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
 *IISER SPECIFIED(SUBAREA):
 DENSE RESIDENTIAL (R2,R3) RUNOFF COEFFICIENT = .7500
 INITIAL SUBAREA FLOW-LENGTH(FEET) =
                                65.00
 UPSTREAM ELEVATION(FEET) = 449.15
 DOWNSTREAM ELEVATION(FEET) = 448.50
 ELEVATION DIFFERENCE(FEET) =
                           0.65
 URBAN SUBAREA OVERLAND TIME OF FLOW(MIN.) = 5.079
 WARNING: INITIAL SUBAREA FLOW PATH LENGTH IS GREATER THAN
        THE MAXIMUM OVERLAND FLOW LENGTH = 65.00
        (Reference: Table 3-1B of Hydrology Manual)
        THE MAXIMUM OVERLAND FLOW LENGTH IS USED IN To CALCULATION!
   50 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.555
 SUBAREA RUNOFF(CFS) =
                     0.46
 TOTAL AREA(ACRES) =
                    0.11 TOTAL RUNOFF(CFS) =
                                             0.46
*********************
 FLOW PROCESS FROM NODE 146.00 TO NODE 147.00 IS CODE = 61
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STANDARD CURB SECTION USED) <>>>
UPSTREAM ELEVATION(FEET) = 448.50 DOWNSTREAM ELEVATION(FEET) = 421.50
 STREET LENGTH(FEET) = 614.00 CURB HEIGHT(INCHES) = 6.0
```

```
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 8.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL (DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.27
   HALFSTREET FLOOD WIDTH(FEET) =
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 4.05
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.10
                                                7.60
 STREET FLOW TRAVEL TIME(MIN.) = 2.53 Tc(MIN.) =
   50 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.282
  *USER SPECIFIED(SUBAREA):
 DENSE RESIDENTIAL (R2,R3) RUNOFF COEFFICIENT = .7500
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.750
 SUBAREA AREA(ACRES) = 2.98 SUBAREA RUNOFF(CFS) = 9.57
                        3.1
 TOTAL AREA(ACRES) =
                                  PEAK FLOW RATE(CFS) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.32 HALFSTREET FLOOD WIDTH(FEET) = 9.72
 FLOW VELOCITY(FEET/SEC.) = 4.67 DEPTH*VELOCITY(FT*FT/SEC.) = 1.50
 LONGEST FLOWPATH FROM NODE 145.00 TO NODE 147.00 = 679.00 FEET.
************************
 FLOW PROCESS FROM NODE 147.00 TO NODE 147.00 IS CODE = 1
 _____
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <<-
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES << < <
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 7.60
 RAINFALL INTENSITY(INCH/HR) =
                             4.28
 TOTAL STREAM AREA(ACRES) = 3.09
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                    9.92
 ** CONFLUENCE DATA **
 STREAM RUNOFF
NUMBER (CFS)
                     TC
                            INTENSITY
                                          AREA
                   (MIN.) (INCH/HOUR)
                                         (ACRE)
             8.01 6.98 4.525 2.76
9.92 7.60 4.282 3.09
   1
            9.92
                    7.60
                               4.282
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
 STREAM RUNOFF Tc
                           INTENSITY
 NUMBER
           (CFS)
                   (MIN.) (INCH/HOUR)
                  6.98 4.525
7.60 4.282
           17.12
    1
           17.51
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 17.51 Tc(MIN.) = TOTAL AREA(ACRES) = 5.8
                                           7.60
 LONGEST FLOWPATH FROM NODE 140.00 TO NODE 147.00 =
                                                     1023.00 FEET.
 FLOW PROCESS FROM NODE 147.00 TO NODE 148.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << < <
-----
 ELEVATION DATA: UPSTREAM(FEET) = 417.00 DOWNSTREAM(FEET) = 411.00
 FLOW LENGTH(FEET) = 192.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 14.7 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 11.36
 ESTIMATED PIPE DIAMETER(INCH) = 18.00
                                     NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 17.51
 PIPE TRAVEL TIME(MIN.) = 0.28 Tc(MIN.) = 7.89
```

```
LONGEST FLOWPATH FROM NODE 140.00 TO NODE
                                        148.00 =
******************
 FLOW PROCESS FROM NODE 148.00 TO NODE 148.00 IS CODE = 1
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <---
______
 TOTAL NUMBER OF STREAMS = 3
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 7.89
RAINFALL INTENSITY(INCH/HR) = 4.18
 RAINFALL INTENSITY(INCH/HR) =
 TOTAL STREAM AREA(ACRES) = 5.85
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                   17.51
*************************
 FLOW PROCESS FROM NODE 150.00 TO NODE 151.00 IS CODE = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS
______
 *USER SPECIFIED(SUBAREA):
 DENSE RESIDENTIAL (R2,R3) RUNOFF COEFFICIENT = .7500
 INITIAL SUBAREA FLOW-LENGTH(FEET) =
                                  65.00
 UPSTREAM ELEVATION(FEET) = 453.45
 DOWNSTREAM ELEVATION(FEET) = 452.80
ELEVATION DIFFERENCE(FEET) = 0.65
 URBAN SUBAREA OVERLAND TIME OF FLOW(MIN.) = 5.079
  50 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.555
 SUBAREA RUNOFF(CFS) = 0.42
 TOTAL AREA(ACRES) =
                     0.10 TOTAL RUNOFF(CFS) =
*********************
 FLOW PROCESS FROM NODE 151.00 TO NODE 152.00 IS CODE = 61
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STANDARD CURB SECTION USED) << < <
______
 UPSTREAM ELEVATION(FEET) = 452.80 DOWNSTREAM ELEVATION(FEET) = 415.80
 STREET LENGTH(FEET) = 900.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 16.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 8.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.28
   HALFSTREET FLOOD WIDTH(FEET) =
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.94
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.09
 STREET FLOW TRAVEL TIME(MIN.) = 3.81 Tc(MIN.) =
   50 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.873
  *USER SPECIFIED(SUBAREA):
 DENSE RESIDENTIAL (R2,R3) RUNOFF COEFFICIENT = .7500
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.750
 SUBAREA AREA(ACRES) = 3.39 SUBAREA RUNOFF(CFS) = 9.85
TOTAL AREA(ACRES) = 3.5 PEAK FLOW RATE(CFS) =
                               PEAK FLOW RATE(CFS) =
 TOTAL AREA(ACRES) =
                       3.5
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.33 HALFSTREET FLOOD WIDTH(FEET) = 9.97
 FLOW VELOCITY(FEET/SEC.) = 4.56 DEPTH*VELOCITY(FT*FT/SEC.) = 1.48 LONGEST FLOWPATH FROM NODE 150.00 TO NODE 152.00 = 965.00 FEET.
*******************
 FLOW PROCESS FROM NODE 152.00 TO NODE 148.00 IS CODE = 1
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <--
______
 TOTAL NUMBER OF STREAMS = 3
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 8.89
```

```
RAINFALL INTENSITY(INCH/HR) = 3.87
 TOTAL STREAM AREA(ACRES) = 3.49
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                  10.14
********************
 FLOW PROCESS FROM NODE 155.00 TO NODE 156.00 IS CODE = 21
>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
 *USER SPECIFIED(SUBAREA):
 DENSE RESIDENTIAL (R2,R3) RUNOFF COEFFICIENT = .7500
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 65.00
 UPSTREAM ELEVATION(FEET) = 430.25
 DOWNSTREAM ELEVATION(FEET) = 429.60
ELEVATION DIFFERENCE(FEET) = 0.65
 URBAN SUBAREA OVERLAND TIME OF FLOW(MIN.) =
 WARNING: INITIAL SUBAREA FLOW PATH LENGTH IS GREATER THAN
         THE MAXIMUM OVERLAND FLOW LENGTH = 65.00
         (Reference: Table 3-1B of Hydrology Manual)
         THE MAXIMUM OVERLAND FLOW LENGTH IS USED IN To CALCULATION!
   50 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.555
 SUBAREA RUNOFF(CFS) = 0.42
 TOTAL AREA(ACRES) =
                      0.10 TOTAL RUNOFF(CFS) =
*******************
 FLOW PROCESS FROM NODE 156.00 TO NODE 157.00 IS CODE = 61
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STANDARD CURB SECTION USED) <>>>
______
 UPSTREAM ELEVATION(FEET) = 429.60 DOWNSTREAM ELEVATION(FEET) = 415.80
 STREET LENGTH(FEET) = 476.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 16.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 8.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL (DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   STREETFLOW MODEL RESULTS HISTNG ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.23
   HALFSTREET FLOOD WIDTH(FEET) = 5.28
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.93
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.68
 STREET FLOW TRAVEL TIME(MIN.) = 2.71 Tc(MIN.) = 7.79
   50 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.217
 *USER SPECIFIED(SUBAREA):
 DENSE RESIDENTIAL (R2,R3) RUNOFF COEFFICIENT = .7500
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.750
 SUBAREA AREA(ACRES) = 1.20 SUBAREA RUNOFF(CFS) = 3.80
 TOTAL AREA(ACRES) =
                        1.3
                                 PEAK FLOW RATE(CFS) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.27 HALFSTREET FLOOD WIDTH(FEET) = 7.16
 FLOW VELOCITY(FEET/SEC.) = 3.26 DEPTH*VELOCITY(FT*FT/SEC.) = 0.88
 LONGEST FLOWPATH FROM NODE 155.00 TO NODE
                                        157.00 = 541.00 FEET.
 FLOW PROCESS FROM NODE 157.00 TO NODE 148.00 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <---
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES << < <
______
 TOTAL NUMBER OF STREAMS = 3
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE:
 TIME OF CONCENTRATION(MIN.) = 7.79
RAINFALL INTENSITY(INCH/HR) = 4.22
 TOTAL STREAM AREA(ACRES) = 1.30
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                  4.11
 ** CONFLUENCE DATA **
```

```
RUNOFF TC INTENSITY (CFS) (MIN.) (INCH/HOUR) 17.51 7.89 4.183
 STREAM
 NUMBER
                                      (ACRE)
                                      5.85
                   7.89 4.183
   1
                 8.89
                            3.873
    2
          10.14
                                         3.49
    3
           4.11
                  7.79
                            4.217
                                         1.30
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFIJIENCE FORMILIA LISED FOR 3 STREAMS.
 ** PEAK FLOW RATE TABLE **
                         INTENSITY
 STREAM RUNOFF TC
                 (MIN.) (INCH/HOUR)
 NUMBER
          (CFS)
                        4.217
                  7.79
    1
          30.36 7.79
30.58 7.89
          30.36
    2
                           4.183
    3
           30.12
                  8.89
                           3.873
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 30.58 Tc(MIN.) = TOTAL AREA(ACRES) = 10.6
                         140.00 TO NODE 148.00 =
 LONGEST FLOWPATH FROM NODE
                                                1215.00 FEET.
 FLOW PROCESS FROM NODE 148.00 TO NODE 138.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << <<
______
 ELEVATION DATA: UPSTREAM(FEET) = 411.00 DOWNSTREAM(FEET) = 410.00
 FLOW LENGTH(FEET) = 122.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 30.0 INCH PIPE IS 21.6 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 8.08
 ESTIMATED PIPE DIAMETER(INCH) = 30.00
                                   NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 30.58
 PIPE TRAVEL TIME(MIN.) = 0.25 Tc(MIN.) =
 LONGEST FLOWPATH FROM NODE 140.00 TO NODE 138.00 =
                                                1337.00 FEET.
***********************
 FLOW PROCESS FROM NODE 138.00 TO NODE 138.00 IS CODE = 11
 >>>>CONFLUENCE MEMORY BANK # 1 WITH THE MAIN-STREAM MEMORY<
______
 ** MAIN STREAM CONFLUENCE DATA **
 STREAM RUNOFF TC INTENSITY AREA
                  (MIN.) (INCH/HOUR) (ACRE)
          (CFS)
 NUMBER
 1 30.58 8.14 4.099 10.64
LONGEST FLOWPATH FROM NODE 140.00 TO NODE 138.00 = 1337.00 FEET.
 ** MEMORY BANK # 1 CONFLUENCE DATA **
 STREAM RUNOFF TC INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE)
 1 75.08 9.38 3.740 26.87

LONGEST FLOWPATH FROM NODE 110.00 TO NODE 138.00 =
                                                 2449.00 FEET.
 ** PEAK FLOW RATE TABLE **
 STREAM RUNOFF TC INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR)
                 8.14
9.38
          95.73
                         4.099
    1
         102.98
                             3.740
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 102.98 Tc(MIN.) =
 TOTAL AREA(ACRES) =
                      37.5
*******************
 FLOW PROCESS FROM NODE 138.00 TO NODE 138.00 IS CODE = 12
 >>>>CLEAR MEMORY BANK # 1 <<<<<
______
FLOW PROCESS FROM NODE 138.00 TO NODE 162.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <---
______
```

```
ELEVATION DATA: UPSTREAM(FEET) = 411.00 DOWNSTREAM(FEET) = 362.00
 FLOW LENGTH(FEET) = 987.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 33.0 INCH PIPE IS 25.0 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 21.36
ESTIMATED PIPE DIAMETER(INCH) = 33.00
                                      NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 102.98
                        0.77
 PIPE TRAVEL TIME(MIN.) =
                                Tc(MIN.) =
                                           10.15
 LONGEST FLOWPATH FROM NODE 110.00 TO NODE 162.00 = 3436.00 FEET.
*************************
 FLOW PROCESS FROM NODE 162.00 TO NODE 162.00 IS CODE = 1
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 10.15
 RAINFALL INTENSITY(INCH/HR) = 3.55
TOTAL STREAM AREA(ACRES) = 37.51
                             3.55
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                   102.98
************************
 FLOW PROCESS FROM NODE 160.00 TO NODE 161.00 IS CODE = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
 *USER SPECIFIED(SUBAREA):
 PAVED SURFACE RUNOFF COEFFICIENT = .8500
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 100.00
 UPSTREAM ELEVATION(FEET) = 419.00
 DOWNSTREAM ELEVATION(FEET) = 415.50
ELEVATION DIFFERENCE(FEET) = 3.50
 URBAN SUBAREA OVERLAND TIME OF FLOW(MIN.) =
 WARNING: INITIAL SUBAREA FLOW PATH LENGTH IS GREATER THAN
         THE MAXIMUM OVERLAND FLOW LENGTH = 82.50
         (Reference: Table 3-1B of Hydrology Manual)
         THE MAXIMUM OVERLAND FLOW LENGTH IS USED IN To CALCULATION!
   50 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.612
 NOTE: RAINFALL INTENSITY IS BASED ON TC = 5-MINUTE.
 SUBAREA RUNOFF(CFS) = 1.10
TOTAL AREA(ACRES) = 0.23 TOTAL RUNOFF(CFS) =
*************************
 FLOW PROCESS FROM NODE 161.00 TO NODE 162.00 IS CODE = 61
______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STANDARD CURB SECTION USED) <>>>
------
 UPSTREAM ELEVATION(FEET) = 415.50 DOWNSTREAM ELEVATION(FEET) = 367.00
 STREET LENGTH(FEET) = 928.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 44.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 22.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL (DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) =
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   STREETFLOW MODEL RESULTS HISING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.32
   HALFSTREET FLOOD WIDTH(FEET) = 9.79
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 5.08
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.63
 STREET FLOW TRAVEL TIME(MIN.) = 3.05 Tc(MIN.) =
   50 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.134
  *USER SPECIFIED(SUBAREA):
 PAVED SURFACE RUNOFF COEFFICIENT = .7200
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.725
 SUBAREA AREA(ACRES) = 5.23 SUBAREA RUNOFF(CFS) = 19.33
TOTAL AREA(ACRES) = 5.5 PEAK FLOW RATE(CFS) =
 TOTAL AREA(ACRES) =
                        5.5
                                PEAK FLOW RATE(CFS) = 20.34
```

END OF SUBAREA STREET FLOW HYDRAULICS:

```
DEPTH(FEET) = 0.38 HALFSTREET FLOOD WIDTH(FEET) = 12.67
 FLOW VELOCITY(FEET/SEC.) = 5.90 DEPTH*VELOCITY(FT*FT/SEC.) = 2.24
 LONGEST FLOWPATH FROM NODE 160.00 TO NODE 162.00 = 1028.00 FEET.
***********************
 FLOW PROCESS FROM NODE 162.00 TO NODE 162.00 IS CODE = 1
 >>>>DESTGNATE INDEPENDENT STREAM FOR CONFIJIENCE<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 5.74
 RAINFALL INTENSITY(INCH/HR) = 5.13
 TOTAL STREAM AREA(ACRES) = 5.46
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                 20.34
 ** CONFLUENCE 2...
STREAM RUNOFF TC
(CFS) (MIN.)
 ** CONFLUENCE DATA **
                          INTENSITY
                          (INCH/HOUR)
                         3.555
                 10.15
          102.98
    1
    2
          20.34 5.74
                            5.134
                                        5.46
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
        RUNOFF
 STREAM
                   Tc
                          INTENSITY
 NUMBER
          (CFS)
                 (MIN.) (INCH/HOUR)
         78.58 5.74 5.134
117.07 10.15 3.555
    1
    2.
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 117.07 Tc(MIN.) = 10.15
TOTAL AREA(ACRES) = 43.0
 LONGEST FLOWPATH FROM NODE 110.00 TO NODE 162.00 =
                                                3436 00 FEET.
 FLOW PROCESS FROM NODE 162.00 TO NODE 162.00 IS CODE = 10
 >>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 1 <<<<
______
*******************
 FLOW PROCESS FROM NODE 170.00 TO NODE 171.00 IS CODE = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
 *USER SPECIFIED(SUBAREA):
 DENSE RESIDENTIAL (R2,R3) RUNOFF COEFFICIENT = .7500
 INITIAL SUBAREA FLOW-LENGTH(FEET) =
                                 65.00
 UPSTREAM ELEVATION(FEET) = 556.05
 DOWNSTREAM ELEVATION(FEET) = 555.40
 ELEVATION DIFFERENCE(FEET) =
                            0.65
 URBAN SUBAREA OVERLAND TIME OF FLOW(MIN.) = 5.079
 WARNING: INITIAL SUBAREA FLOW PATH LENGTH IS GREATER THAN
        THE MAXIMUM OVERLAND FLOW LENGTH = 65.00
        (Reference: Table 3-1B of Hydrology Manual)
        THE MAXIMUM OVERLAND FLOW LENGTH IS USED IN To CALCULATION!
   50 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.555
 SUBAREA RUNOFF(CFS) =
                      0.75
                    0.18 TOTAL RUNOFF(CFS) =
 TOTAL AREA(ACRES) =
                                              0.75
 FLOW PROCESS FROM NODE 171.00 TO NODE 172.00 IS CODE = 61
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA <>>>
 >>>>(STANDARD CURB SECTION USED) <<<<
-----
 UPSTREAM ELEVATION(FEET) = 555.40 DOWNSTREAM ELEVATION(FEET) = 529.00
 STREET LENGTH(FEET) = 620.00
                           CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 16.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 8.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
```

```
SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL (DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.29
  HALFSTREET FLOOD WIDTH(FEET) =
  AVERAGE FLOW VELOCITY(FEET/SEC.) = 4.24
  PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.25
                                            7.52
 STREET FLOW TRAVEL TIME(MIN.) = 2.44 Tc(MIN.) =
   50 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.314
 *USER SPECIFIED(SUBAREA):
 DENSE RESIDENTIAL (R2,R3) RUNOFF COEFFICIENT = .7500
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.750
 SUBAREA AREA(ACRES) = 3.82
                             SUBAREA RUNOFF(CFS) = 12.36
 TOTAL AREA(ACRES) =
                      4.0
                               PEAK FLOW RATE(CFS) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.35 HALFSTREET FLOOD WIDTH(FEET) = 10.97
 FLOW VELOCITY(FEET/SEC.) = 4.90 DEPTH*VELOCITY(FT*FT/SEC.) = 1.69
 LONGEST FLOWPATH FROM NODE 170.00 TO NODE 172.00 = 685.00 FEET.
******************
 FLOW PROCESS FROM NODE 172.00 TO NODE 177.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) < < < <
______
 ELEVATION DATA: UPSTREAM(FEET) = 524.00 DOWNSTREAM(FEET) = 479.00
 FLOW LENGTH(FEET) = 483.00 MANNING'S N = 0.013
 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 8.2 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 16.52
 ESTIMATED PIPE DIAMETER(INCH) = 18.00
                                  NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 12.94
 PIPE TRAVEL TIME(MIN.) = 0.49 Tc(MIN.) =
 LONGEST FLOWPATH FROM NODE 170.00 TO NODE 177.00 = 1168.00 FEET.
************************
 FLOW PROCESS FROM NODE 177.00 TO NODE 177.00 IS CODE = 1
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLIENCE<
______
 TOTAL NUMBER OF STREAMS = 3
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 8.00
 RAINFALL INTENSITY(INCH/HR) = 4.14
TOTAL STREAM AREA(ACRES) = 4.00
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                 12.94
 FLOW PROCESS FROM NODE 175.00 TO NODE 176.00 IS CODE = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
 *USER SPECIFIED(SUBAREA):
 DENSE RESIDENTIAL (R2,R3) RUNOFF COEFFICIENT = .7500
 INITIAL SUBAREA FLOW-LENGTH(FEET) =
                                65.00
 UPSTREAM ELEVATION(FEET) = 529.95
 DOWNSTREAM ELEVATION(FEET) = 529.30
ELEVATION DIFFERENCE(FEET) = 0.65
 URBAN SUBAREA OVERLAND TIME OF FLOW(MIN.) = 5.079
   50 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.555
 SUBAREA RUNOFF(CFS) = 0.67
                    0.16 TOTAL RUNOFF(CFS) =
 TOTAL AREA(ACRES) =
************************
 FLOW PROCESS FROM NODE 176.00 TO NODE 177.00 IS CODE = 61
______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STANDARD CURB SECTION USED) <>>>
_____
 UPSTREAM ELEVATION(FEET) = 529.30 DOWNSTREAM ELEVATION(FEET) = 484.00
```

```
STREET LENGTH(FEET) = 424.70 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 16.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 8.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.24
   HALFSTREET FLOOD WIDTH(FEET) =
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 5.76
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.39
 STREET FLOW TRAVEL TIME(MIN.) = 1.23 Tc(MIN.) =
   50 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.831
 *USER SPECIFIED(SUBAREA):
 DENSE RESIDENTIAL (R2,R3) RUNOFF COEFFICIENT = .7500
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.750
 SUBAREA AREA(ACRES) = 2.51 SUBAREA RUNOFF(CFS) = 9.09
                             PEAK FLOW RATE(CFS) = 9.67
 TOTAL AREA(ACRES) =
                     2.7
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.28 HALFSTREET FLOOD WIDTH(FEET) = 7.92
 FLOW VELOCITY(FEET/SEC.) = 6.48 DEPTH*VELOCITY(FT*FT/SEC.) =
 LONGEST FLOWPATH FROM NODE 175.00 TO NODE 177.00 = 489.70 FEET.
*********************
 FLOW PROCESS FROM NODE 177.00 TO NODE 177.00 IS CODE = 1
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <--
______
 TOTAL NUMBER OF STREAMS = 3
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 6.31
 RAINFALL INTENSITY(INCH/HR) =
 TOTAL STREAM AREA(ACRES) = 2.67
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                  9.67
*******************
 FLOW PROCESS FROM NODE 180.00 TO NODE 181.00 IS CODE = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
 *USER SPECIFIED(SUBAREA):
 VEGETATED SLOPES (STEEP) RUNOFF COEFFICIENT = .6000
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 100.00
 UPSTREAM ELEVATION(FEET) = 643.00
 DOWNSTREAM ELEVATION(FEET) = 633.00
ELEVATION DIFFERENCE(FEET) = 10.00
 URBAN SUBAREA OVERLAND TIME OF FLOW(MIN.) =
                                      4.178
 WARNING: THE MAXIMUM OVERLAND FLOW SLOPE, 10.%, IS USED IN To CALCULATION!
   50 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.612
 NOTE: RAINFALL INTENSITY IS BASED ON To = 5-MINUTE.
 SUBAREA RUNOFF(CFS) =
                       0.24
 TOTAL AREA(ACRES) =
                    0.07 TOTAL RUNOFF(CFS) =
*********************
 FLOW PROCESS FROM NODE 181.00 TO NODE 182.00 IS CODE = 53
______
 >>>>COMPUTE NATURAL MOUNTAIN CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA
______
 ELEVATION DATA: UPSTREAM(FEET) = 633.00 DOWNSTREAM(FEET) = 500.00
 CHANNEL LENGTH THRU SUBAREA(FEET) = 857.00 CHANNEL SLOPE = 0.1552
 NOTE: CHANNEL FLOW OF 1. CFS WAS ASSUMED IN VELOCITY ESTIMATION
 CHANNEL FLOW THRU SUBAREA(CFS) =
                               0.24
 TRAVEL TIME(MIN.) = 6.47 Tc(MIN.) = 10.65
LONGEST FLOWPATH FROM NODE 180.00 TO NODE 182.00 = 957.00 FEE
                                                   957.00 FEET.
```

```
FLOW PROCESS FROM NODE
                     >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
  50 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.446
 *USER SPECIFIED(SUBAREA):
 VEGETATED SLOPES (STEEP) RUNOFF COEFFICIENT = .6000
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.6000
 SUBAREA AREA(ACRES) = 3.50 SUBAREA RUNOFF(CFS) = TOTAL AREA(ACRES) = 3.6 TOTAL RUNOFF(CFS) =
                                                7.24
 TC(MIN.) = 10.65
*********************
 FLOW PROCESS FROM NODE 183.00 TO NODE 182.00 IS CODE = 81
_____
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
  50 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.446
 *USER SPECIFIED(SUBAREA):
 VEGETATED SLOPES (STEEP) RUNOFF COEFFICIENT = .6000
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.6000
 SUBAREA AREA(ACRES) = 1.00 SUBAREA RUNOFF(CFS) = TOTAL AREA(ACRES) = 4.6 TOTAL RUNOFF(CFS) =
                                                2.07
 TC(MIN.) = 10.65
********************
 FLOW PROCESS FROM NODE 182.00 TO NODE 177.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) < < < <
_____
 ELEVATION DATA: UPSTREAM(FEET) = 495.00 DOWNSTREAM(FEET) = 479.00
 FLOW LENGTH(FEET) = 160.00 MANNING'S N = 0.013
 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 6.8 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 15.58
 ESTIMATED PIPE DIAMETER(INCH) = 18.00
                                    NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) =
                   9.45
 PIPE TRAVEL TIME(MIN.) = 0.17
                               Tc(MIN.) = 10.82
 LONGEST FLOWPATH FROM NODE 180.00 TO NODE 177.00 =
                                                   1117.00 FEET.
************************
 FLOW PROCESS FROM NODE 177.00 TO NODE 177.00 IS CODE = 1
 >>>>DESTGNATE INDEPENDENT STREAM FOR CONFLIENCE<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES <>>>
______
 TOTAL NUMBER OF STREAMS = 3
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE:
 TIME OF CONCENTRATION(MIN.) = 10.82
RAINFALL INTENSITY(INCH/HR) = 3.41
TOTAL STREAM AREA(ACRES) = 4.57
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                   9.45
 ** CONFLUENCE DATA **
 STREAM RUNOFF
NUMBER (CFS)
                   Tc
                           INTENSITY
                  (MIN.) (INCH/HOUR) (ACRE)
          12.94 8.00 4.143
9.67 6.31 4.831
9.45 10.82 3.410
    1
                                         4.00
    2.
                                           2.67
    3
                                           4.57
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 3 STREAMS.
 ** PEAK FLOW RATE TABLE **
 STREAM RUNOFF TC INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR)
           25.38 6.31 4.831
28.23 8.00 4.143
    1
    2
           26.93 10.82
                           3.410
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 28.23 Tc(MIN.) = TOTAL AREA(ACRES) = 11.2
                                          8.00
 LONGEST FLOWPATH FROM NODE 170.00 TO NODE 177.00 = 1168.00 FEET.
```

```
FLOW PROCESS FROM NODE 177.00 TO NODE 187.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FIOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <>>>
______
 ELEVATION DATA: UPSTREAM(FEET) = 479.00 DOWNSTREAM(FEET) = 425.00
 FLOW LENGTH(FEET) = 570.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 13.6 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 19.69
 ESTIMATED PIPE DIAMETER(INCH) = 18.00
                                   NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 28.23
 PIPE TRAVEL TIME(MIN.) = 0.48 Tc(MIN.) =
                                        8.49
 LONGEST FLOWPATH FROM NODE 170.00 TO NODE 187.00 = 1738.00 FEET.
***********************
 FLOW PROCESS FROM NODE 187.00 TO NODE 187.00 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <---
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 8.49
 RAINFALL INTENSITY(INCH/HR) = 3.99
 TOTAL STREAM AREA(ACRES) = 11.24
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                 28.23
************************
 FLOW PROCESS FROM NODE 185.00 TO NODE 186.00 IS CODE = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
 *USER SPECIFIED(SUBAREA):
 DENSE RESIDENTIAL (R2,R3) RUNOFF COEFFICIENT = .7500
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 65.00
 UPSTREAM ELEVATION(FEET) = 485.25

DOWNSTREAM ELEVATION(FEET) = 484.60

ELEVATION DIFFERENCE(FEET) = 0.65
 URBAN SUBAREA OVERLAND TIME OF FLOW(MIN.) =
 WARNING: INITIAL SUBAREA FLOW PATH LENGTH IS GREATER THAN
        THE MAXIMUM OVERLAND FLOW LENGTH = 65.00
        (Reference: Table 3-1B of Hydrology Manual)
        THE MAXIMUM OVERLAND FLOW LENGTH IS USED IN To CALCULATION!
   50 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.555
 SUBAREA RUNOFF(CFS) =
                     0.79
 TOTAL AREA(ACRES) =
                    0.19 TOTAL RUNOFF(CFS) =
                                              0.79
*************************
 FLOW PROCESS FROM NODE 186.00 TO NODE 187.00 IS CODE = 61
______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STANDARD CURB SECTION USED) < < < <
______
 UPSTREAM ELEVATION(FEET) = 484.60 DOWNSTREAM ELEVATION(FEET) = 430.00
 STREET LENGTH(FEET) = 524.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 16.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 8.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL (DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.24
   HALFSTREET FLOOD WIDTH(FEET) =
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 5.68
  PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.38
 STREET FLOW TRAVEL TIME(MIN.) = 1.54 Tc(MIN.) =
                                             6.62
   50 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.684
 *USER SPECIFIED(SUBAREA):
 DENSE RESIDENTIAL (R2,R3) RUNOFF COEFFICIENT = .7500
```

```
AREA-AVERAGE RUNOFF COEFFICIENT = 0.750
 SUBAREA AREA(ACRES) = 2.51 SUBAREA RUNOFF(CFS) =
                                              8.82
                            PEAK FLOW RATE(CFS) =
 TOTAL AREA(ACRES) =
                    2.7
                                                    9.49
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.28 HALFSTREET FLOOD WIDTH(FEET) = 7.87
 FLOW VELOCITY(FEET/SEC.) = 6.43 DEPTH*VELOCITY(FT*FT/SEC.) = 1.82
 LONGEST FLOWPATH FROM NODE 185.00 TO NODE 187.00 =
                                               589 00 FEET.
*************************
 FLOW PROCESS FROM NODE 187.00 TO NODE 187.00 IS CODE = 1
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES
TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 6.62
 RAINFALL INTENSITY(INCH/HR) = 4.68
TOTAL STREAM AREA(ACRES) = 2.70
                         4.68
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                               9.49
 ** CONFLUENCE DATA **
 STREAM RUNOFF
                 Tc
                         INTENSITY
 NUMBER
          (CFS)
                 (MIN.) (INCH/HOUR)
                                  11.24
          28.23
                 8.49 3.989
6.62 4.684
   1
          9.49
    2
               6.62
                          4.684
                                       2.70
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
 STREAM
       RUNOFF
                  Tc
                         INTENSITY
 NUMBER
         (CFS)
                 (MIN.) (INCH/HOUR)
          33.52 6.62 4.684
36.30 8.49 3.989
    1
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 36.30 Tc(MIN.) = TOTAL AREA(ACRES) = 13.9
                                     8.49
 LONGEST FLOWPATH FROM NODE 170.00 TO NODE 187.00 = 1738.00 FEET.
*************************
 FLOW PROCESS FROM NODE 187.00 TO NODE 192.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <----
______
 ELEVATION DATA: UPSTREAM(FEET) = 425.00 DOWNSTREAM(FEET) = 418.00
 FLOW LENGTH(FEET) = 575.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 30.0 INCH PIPE IS 21.2 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 9.81
 ESTIMATED PIPE DIAMETER(INCH) = 30.00
                                 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 36.30
 PIPE TRAVEL TIME(MIN.) = 0.98
                          Tc(MIN.) =
                                      9.46
                                     192.00 =
 LONGEST FLOWPATH FROM NODE 170.00 TO NODE
                                              2313.00 FEET.
 FLOW PROCESS FROM NODE 192.00 TO NODE 192.00 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <>>>
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 9.46
RAINFALL INTENSITY(INCH/HR) = 3.72
 TOTAL STREAM AREA(ACRES) = 13.94
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                36.30
*************************
 FLOW PROCESS FROM NODE 190.00 TO NODE 191.00 IS CODE = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS
______
 *USER SPECIFIED(SUBAREA):
 DENSE RESIDENTIAL (R2,R3) RUNOFF COEFFICIENT = .7500
```

```
INITIAL SUBAREA FLOW-LENGTH(FEET) =
 UPSTREAM ELEVATION(FEET) = 434.55
 ELEVATION DIFFERENCE (FEET) = 433.90

URBAN CHARRA
 URBAN SUBAREA OVERLAND TIME OF FLOW(MIN.) =
 WARNING: INITIAL SUBAREA FLOW PATH LENGTH IS GREATER THAN
         THE MAXIMUM OVERLAND FLOW LENGTH = 65.00
         (Reference: Table 3-1B of Hydrology Manual)
         THE MAXIMUM OVERLAND FLOW LENGTH IS USED IN To CALCULATION!
   50 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.555
 SUBAREA RUNOFF(CFS) = 0.33
 TOTAL AREA(ACRES) =
                      0.08 TOTAL RUNOFF(CFS) =
************************
 FLOW PROCESS FROM NODE 191.00 TO NODE 192.00 IS CODE = 61
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STANDARD CURB SECTION USED) < < < <
_____
 UPSTREAM ELEVATION(FEET) = 433.90 DOWNSTREAM ELEVATION(FEET) = 423.00
 STREET LENGTH(FEET) = 681.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 16.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 8.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.34
   HALFSTREET FLOOD WIDTH(FEET) =
                               10.47
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.91
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.98
 STREET FLOW TRAVEL TIME(MIN.) = 3.90 Tc(MIN.) =
   50 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.847
  *USER SPECIFIED(SUBAREA):
 DENSE RESIDENTIAL (R2,R3) RUNOFF COEFFICIENT = .7500
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.750
 SUBAREA AREA(ACRES) = 4.57 SUBAREA RUNOFF(CFS) = 13.19
 TOTAL AREA(ACRES) =
                       4.7
                               PEAK FLOW RATE(CFS) =
                                                         13.42
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.40 HALFSTREET FLOOD WIDTH(FEET) = 13.66
 FLOW VELOCITY(FEET/SEC.) = 3.38 DEPTH*VELOCITY(FT*FT/SEC.) =
 LONGEST FLOWPATH FROM NODE 190.00 TO NODE 192.00 = 746.00 FEET.
************************
 FLOW PROCESS FROM NODE 192.00 TO NODE 192.00 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <>>>
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES << < <
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 8.98
 RAINFALL INTENSITY(INCH/HR) =
                             3.85
 TOTAL STREAM AREA(ACRES) = 4.65
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                   13.42
 ** CONFLUENCE DATA **
 STREAM RUNOFF TC INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR)
                    9.46
                            3.719
                                          13.94
           36.30
    1
     2
           13.42
                    8.98
                               3.847
                                            4.65
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
 STREAM RUNOFF Tc
                           INTENSITY
           (CFS) (MIN.) (INCH/HOUR)
 NUMBER
```

```
48.51 8.98 3.847
           49.27
                  9.46
                           3.719
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 49.27 Tc(MIN.) = TOTAL AREA(ACRES) = 18.6
                                       9.46
 LONGEST FLOWPATH FROM NODE 170.00 TO NODE
                                       192.00 =
                                                 2313.00 FEET.
************************
 FLOW PROCESS FROM NODE 192.00 TO NODE 162.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << <<
______
 ELEVATION DATA: UPSTREAM(FEET) = 418.00 DOWNSTREAM(FEET) = 362.00
 FLOW LENGTH(FEET) = 539.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 24.0 INCH PIPE IS 15.0 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 23.91
 ESTIMATED PIPE DIAMETER(INCH) = 24.00
                                   NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 49.27
 PIPE TRAVEL TIME(MIN.) = 0.38 Tc(MIN.) =
                                       9.84
 LONGEST FLOWPATH FROM NODE 170.00 TO NODE 162.00 =
                                                2852.00 FEET.
*******************
 FLOW PROCESS FROM NODE 162.00 TO NODE 162.00 IS CODE = 11
 >>>>CONFLUENCE MEMORY BANK # 1 WITH THE MAIN-STREAM MEMORY<
______
 ** MAIN STREAM CONFLUENCE DATA **

        STREAM
        RUNOFF
        Tc
        INTENSITY
        AREA

        NUMBER
        (CFS)
        (MIN.)
        (INCH/HOUR)
        (ACRE)

        1
        49.27
        9.84
        3.626
        18.59

 1 49.27 9.84 3.626 18.59
LONGEST FLOWPATH FROM NODE 170.00 TO NODE 162.00 =
                                                2852.00 FEET.
 ** MEMORY BANK # 1 CONFLUENCE DATA **
 42.97
 LONGEST FLOWPATH FROM NODE 110.00 TO NODE 162.00 = 3436.00 FEET.
 ** PEAK FLOW RATE TABLE **
 STREAM RUNOFF To
                          INTENSITY
                 (MIN.) (INCH/HOUR)
 NUMBER
         (CFS)
               9.84 3.626
10.15 3.555
         162.77
    1
        165.36
    2
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 165.36 Tc(MIN.) = 10.15
 TOTAL AREA(ACRES) =
                     61.6
************************
 FLOW PROCESS FROM NODE 162.00 TO NODE 162.00 IS CODE = 12
-----
                     _____
 >>>>CLEAR MEMORY BANK # 1 <<<<
______
FLOW PROCESS FROM NODE 162.00 TO NODE 197.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 362.00 DOWNSTREAM(FEET) = 315.00
 FLOW LENGTH(FEET) = 915.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 39.0 INCH PIPE IS 29.8 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 24.31
 ESTIMATED PIPE DIAMETER(INCH) = 39.00
                                   NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 165.36
 PIPE TRAVEL TIME(MIN.) = 0.63
                            Tc(MIN.) = 10.78
 LONGEST FLOWPATH FROM NODE 110.00 TO NODE
                                       197.00 =
                                                4351.00 FEET.
***********************
 FLOW PROCESS FROM NODE 197.00 TO NODE 197.00 IS CODE = 1
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <>>>
```

```
TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 10.78 RAINFALL INTENSITY(INCH/HR) = 3.42
 TOTAL STREAM AREA(ACRES) = 61.56
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                   165.36
************************
 FLOW PROCESS FROM NODE 195.00 TO NODE 196.00 IS CODE = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
 *USER SPECIFIED(SUBAREA):
 PAVED SURFACE RUNOFF COEFFICIENT = .7300
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 100.00
 UPSTREAM ELEVATION(FEET) = 370.00
 DOWNSTREAM ELEVATION(FEET) = 360.00
ELEVATION DIFFERENCE(FEET) = 10.00
                             10.00
 URBAN SUBAREA OVERLAND TIME OF FLOW(MIN.) =
                                        3.092
 WARNING: THE MAXIMUM OVERLAND FLOW SLOPE, 10.%, IS USED IN To CALCULATION!
  50 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.612
 NOTE: RAINFALL INTENSITY IS BASED ON To = 5-MINUTE.
 SUBAREA RUNOFF(CFS) =
                       1.52
 TOTAL AREA(ACRES) =
                      0.37 TOTAL RUNOFF(CFS) =
                                                  1.52
*******************
 FLOW PROCESS FROM NODE 196.00 TO NODE 197.00 IS CODE = 61
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STANDARD CURB SECTION USED) <<<<
______
 UPSTREAM ELEVATION(FEET) = 360.60 DOWNSTREAM ELEVATION(FEET) = 318.50
 STREET LENGTH(FEET) = 805.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 44.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 22.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.32
   HALFSTREET FLOOD WIDTH(FEET) =
                                9.63
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 5.08
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.62
 STREET FLOW TRAVEL TIME(MIN.) = 2.64 Tc(MIN.) =
   50 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.137
  *IISER SPECIFIED(SUBAREA):
 PAVED SURFACE RUNOFF COEFFICIENT = .7200
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.721
 SUBAREA AREA(ACRES) = 4.90 SUBAREA RUNOFF(CFS) = 18.12
 TOTAL AREA(ACRES) =
                       5.3
                                PEAK FLOW RATE(CFS) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.38 HALFSTREET FLOOD WIDTH(FEET) = 12.51
 FLOW VELOCITY(FEET/SEC.) = 5.80 DEPTH*VELOCITY(FT*FT/SEC.) = 2.18
 LONGEST FLOWPATH FROM NODE 195.00 TO NODE
                                         197.00 =
                                                      905.00 FEET.
*******************
 FLOW PROCESS FROM NODE 197.00 TO NODE 197.00 IS CODE = 1
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES
TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 5.73
 RAINFALL INTENSITY(INCH/HR) = 5.14
TOTAL STREAM AREA(ACRES) = 5.27
                            5.14
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
```

```
** CONFLUENCE DATA **
 CONFIDENCE UND TATA

STREAM RUNOFF TC INTENSITY

NUMBER (CFS) (MIN.) (INCH/HOUR)

1 165.36 10.78 3.420

2 19.51 5.73 5.137
                                        AREA
                                       (ACRE)
                                          61.56
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
 STREAM RUNOFF TC
                           INTENSITY
                  (MIN.) (INCH/HOUR)
 NUMBER
           (CFS)
          107.51 5.73 5.137
178.35 10.78 3.420
    1
    2
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 178.35 Tc(MIN.) = TOTAL AREA(ACRES) = 66.8
                                         10.78
 LONGEST FLOWPATH FROM NODE 110.00 TO NODE
                                        197.00 =
                                                   4351.00 FEET.
 FLOW PROCESS FROM NODE 197.00 TO NODE 198.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << <<
______
 ELEVATION DATA: UPSTREAM(FEET) = 313.00 DOWNSTREAM(FEET) = 283.50
 FLOW LENGTH(FEET) = 858.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 45.0 INCH PIPE IS 31.5 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 21.57
 ESTIMATED PIPE DIAMETER(INCH) = 45.00
                                    NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 178.35
 PIPE TRAVEL TIME(MIN.) = 0.66 Tc(MIN.) = 11.44
 LONGEST FLOWPATH FROM NODE 110.00 TO NODE 198.00 =
                                                   5209.00 FEET.
*********************
 FLOW PROCESS FROM NODE 197.00 TO NODE 198.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<>>>
______
  50 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.291
 *USER SPECIFIED(SUBAREA):
 VEGETATED SLOPES (HILLY) RUNOFF COEFFICIENT = .5000
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.7261
 SUBAREA AREA(ACRES) = 2.15 SUBAREA RUNOFF(CFS) = TOTAL AREA(ACRES) = 69.0 TOTAL RUNOFF(CFS) =
 TC(MIN.) = 11.44
 NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE
 FLOW PROCESS FROM NODE 198.00 TO NODE 198.00 IS CODE = 7
 >>>>IISER SPECIFIED HYDROLOGY INFORMATION AT NODE<
______
 USER-SPECIFIED VALUES ARE AS FOLLOWS:
 TC(MIN) = 22.24 RAIN INTENSITY(INCH/HOUR) = 2.14
                   68.98 TOTAL RUNOFF(CFS) =
 TOTAL AREA(ACRES) =
************************
 FLOW PROCESS FROM NODE 198.00 TO NODE 304.00 IS CODE = 31
 >>>>COMPILTE PIPE-FIOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << < <
______
 ELEVATION DATA: UPSTREAM(FEET) = 278.00 DOWNSTREAM(FEET) = 200.00
 FLOW LENGTH(FEET) = 1006.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 30.0 INCH PIPE IS 19.8 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 24.38
 ESTIMATED PIPE DIAMETER(INCH) = 30.00
                                    NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) =
                   83.92
 PIPE TRAVEL TIME(MIN.) = 0.69
                             Tc(MIN.) = 22.93
 LONGEST FLOWPATH FROM NODE
                         110.00 TO NODE 304.00 =
                                                   6215.00 FEET.
*******************
```

FLOW PROCESS FROM NODE 304.00 TO NODE 304.00 IS CODE = 1

```
>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <>
______
 TOTAL NUMBER OF STREAMS = 3
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 22.93
RAINFALL INTENSITY(INCH/HR) = 2.10
 TOTAL STREAM AREA(ACRES) = 68.98
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                83.92
************************
 FLOW PROCESS FROM NODE 300.00 TO NODE 301.00 IS CODE = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
 *USER SPECIFIED(SUBAREA):
 VEGETATED SLOPES (STEEP) RUNOFF COEFFICIENT = .6000
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 100.00
 UPSTREAM ELEVATION(FEET) = 655.00
                         645.00
10.00
 DOWNSTREAM ELEVATION(FEET) =
 ELEVATION DIFFERENCE(FEET) =
 URBAN SUBAREA OVERLAND TIME OF FLOW(MIN.) =
                                     4.178
 WARNING: THE MAXIMUM OVERLAND FLOW SLOPE, 10.%, IS USED IN To CALCULATION!
   50 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.612
 NOTE: RAINFALL INTENSITY IS BASED ON To = 5-MINUTE.
 SUBAREA RUNOFF(CFS) =
                     1.11
                    0.33 TOTAL RUNOFF(CFS) =
 TOTAL AREA(ACRES) =
                                              1.11
********************
 FLOW PROCESS FROM NODE 301.00 TO NODE 302.00 IS CODE = 53
 >>>>COMPUTE NATURAL MOUNTAIN CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA<
-----
 ELEVATION DATA: UPSTREAM(FEET) = 645.00 DOWNSTREAM(FEET) = 450.00
 CHANNEL LENGTH THRU SUBAREA(FEET) = 1066.00 CHANNEL SLOPE = 0.1829
 CHANNEL FLOW THRU SUBAREA(CFS) =
                               1.11
 FLOW VELOCITY(FEET/SEC) = 2.48 (PER LACFCD/RCFC&WCD HYDROLOGY MANUAL)
TRAVEL TIME(MIN.) = 7.16 Tc(MIN.) = 11.34
 LONGEST FLOWPATH FROM NODE 300.00 TO NODE 302.00 =
                                               1166.00 FEET.
***********************
 FLOW PROCESS FROM NODE 301.00 TO NODE 302.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
  50 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.309
 *USER SPECIFIED(SUBAREA):
 VEGETATED SLOPES (STEEP) RUNOFF COEFFICIENT = .6000
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.6000
 SUBAREA AREA(ACRES) = 18.82 SUBAREA RUNOFF(CFS) = 37.37
                    19.1 TOTAL RUNOFF(CFS) =
 TOTAL AREA(ACRES) =
 TC(MIN.) = 11.34
************************
 FLOW PROCESS FROM NODE 302.00 TO NODE 303.00 IS CODE = 52
 >>>>COMPUTE NATURAL VALLEY CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA<
_____
 ELEVATION DATA: UPSTREAM(FEET) = 450.00 DOWNSTREAM(FEET) =
 CHANNEL LENGTH THRU SUBAREA(FEET) = 2180.00 CHANNEL SLOPE = 0.0665
 CHANNEL FLOW THRU SUBAREA(CFS) =
                               38.02
 FLOW VELOCITY(FEET/SEC) = 9.23 (PER LACFCD/RCFC&WCD HYDROLOGY MANUAL)
TRAVEL TIME(MIN.) = 3.94 Tc(MIN.) = 15.28
LONGEST FLOWPATH FROM NODE 300.00 TO NODE 303.00 = 3346.00 FEE
************************
 FLOW PROCESS FROM NODE 302.00 TO NODE 303.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
  50 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.731
 *USER SPECIFIED(SUBAREA):
 VEGETATED SLOPES (STEEP) RUNOFF COEFFICIENT = .6000
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.6000
```

```
SUBAREA AREA(ACRES) = 34.79 SUBAREA RUNOFF(CFS) = 57.00
 TOTAL AREA(ACRES) = 53.9 TOTAL RUNOFF(CFS) =
 TC(MIN.) = 15.28
************************
 FLOW PROCESS FROM NODE
                       303.00 TO NODE 304.00 IS CODE = 53
 >>>>COMPUTE NATURAL MOUNTAIN CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA<
______
 ELEVATION DATA: UPSTREAM(FEET) = 305.00 DOWNSTREAM(FEET) = 200.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 751.00 CHANNEL SLOPE = 0.1398 CHANNEL FLOW THRU SUBAREA(CFS) = 88.38
 FLOW VELOCITY(FEET/SEC) = 9.31 (PER LACFCD/RCFC&WCD HYDROLOGY MANUAL)
TRAVEL TIME(MIN.) = 1.34 Tc(MIN.) = 16.62
LONGEST FLOWPATH FROM NODE 300.00 TO NODE 304.00 = 4097.00 FEE
************************
 FLOW PROCESS FROM NODE 303.00 TO NODE 304.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
  50 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.586
 *USER SPECIFIED(SUBAREA):
 VEGETATED SLOPES (STEEP) RUNOFF COEFFICIENT = .6000
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.6000
 SUBAREA AREA(ACRES) = 4.88 SUBAREA RUNOFF(CFS) = TOTAL AREA(ACRES) = 58.8 TOTAL RUNOFF(CFS) =
                                                   7.57
 TC(MIN.) = 16.62
*************
 FLOW PROCESS FROM NODE 304.00 TO NODE 304.00 IS CODE = 1
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <---
______
 TOTAL NUMBER OF STREAMS = 3
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 16.62
RAINFALL INTENSITY(INCH/HR) = 2.59
TOTAL STREAM AREA(ACRES) = 58.82
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                     91.27
**************************
 FLOW PROCESS FROM NODE 310.00 TO NODE 311.00 IS CODE = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS
 *USER SPECIFIED(SUBAREA):
 VEGETATED SLOPES (STEEP) RUNOFF COEFFICIENT = .6000
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 100.00
 UPSTREAM ELEVATION(FEET) = 410.00

DOWNSTREAM ELEVATION(FEET) = 400.00

ELEVATION DIFFERENCE(FEET) = 10.00
 URBAN SUBAREA OVERLAND TIME OF FLOW(MIN.) = 4.178
 WARNING: THE MAXIMUM OVERLAND FLOW SLOPE, 10.%, IS USED IN To CALCULATION!
   50 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.612
 NOTE: RAINFALL INTENSITY IS BASED ON To = 5-MINUTE.
 SUBAREA RUNOFF(CFS) = 2.16
                              TOTAL RUNOFF(CFS) =
 TOTAL AREA(ACRES) =
                       0.64
                                                      2.16
************************
 FLOW PROCESS FROM NODE 311.00 TO NODE 312.00 IS CODE = 52
 >>>>COMPUTE NATURAL VALLEY CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA<
_____
 ELEVATION DATA: UPSTREAM(FEET) = 400.00 DOWNSTREAM(FEET) = 264.00
 CHANNEL LENGTH THRU SUBAREA(FEET) = 2121.00 CHANNEL SLOPE = 0.0641
 CHANNEL FLOW THRU SUBAREA(CFS) =
                                    2.16
 FLOW VELOCITY(FEET/SEC) = 4.43 (PER LACFCD/RCFC&WCD HYDROLOGY MANUAL)
TRAVEL TIME(MIN.) = 7.99 Tc(MIN.) = 12.16
LONGEST FLOWPATH FROM NODE 310.00 TO NODE 312.00 = 2221.00 FEE
*******************
 FLOW PROCESS FROM NODE 311.00 TO NODE 312.00 IS CODE = 81
```

```
>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
  50 YEAR RAINFALL INTENSITY (INCH/HOUR) = 3.163
 *USER SPECIFIED(SUBAREA):
 VEGETATED SLOPES (STEEP) RUNOFF COEFFICIENT = .6000
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.6000
 SUBAREA AREA(ACRES) = 28.42 SUBAREA RUNOFF(CFS) = TOTAL AREA(ACRES) = 29.1 TOTAL RUNOFF(CFS) =
 TOTAL AREA(ACRES) =
                                              55.15
 TC(MIN.) = 12.16
*************************
 FLOW PROCESS FROM NODE 312.00 TO NODE 313.00 IS CODE = 52
______
 >>>>COMPUTE NATURAL VALLEY CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA<
______
 ELEVATION DATA: UPSTREAM(FEET) = 264.00 DOWNSTREAM(FEET) = 224.00
 CHANNEL LENGTH THRU SUBAREA(FEET) = 1340.00 CHANNEL SLOPE = 0.0299 CHANNEL FLOW THRU SUBAREA(CFS) = 55.15
 FLOW VELOCITY(FEET/SEC) = 6.88 (PER LACFCD/RCFC&WCD HYDROLOGY MANUAL)
TRAVEL TIME(MIN.) = 3.25 Tc(MIN.) = 15.41
 LONGEST FLOWPATH FROM NODE 310.00 TO NODE
                                     313.00 =
                                                3561.00 FEET.
*******************
 FLOW PROCESS FROM NODE 312.00 TO NODE 313.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
  50 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.715
 *USER SPECIFIED(SUBAREA):
 VEGETATED SLOPES (STEEP) RUNOFF COEFFICIENT = .6000
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.6000
 SUBAREA AREA(ACRES) = 27.10 SUBAREA RUNOFF(CFS) = 44.15
TOTAL AREA(ACRES) = 56.2 TOTAL RUNOFF(CFS) = 91.
                                              91.50
 TC(MIN.) = 15.41
*********************
 FLOW PROCESS FROM NODE 313.00 TO NODE 304.00 IS CODE = 52
 >>>>COMPUTE NATURAL VALLEY CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA<
-----
 ELEVATION DATA: UPSTREAM(FEET) = 224.00 DOWNSTREAM(FEET) = 200.00
 CHANNEL LENGTH THRU SUBAREA(FEET) = 1435.00 CHANNEL SLOPE = 0.0167
CHANNEL FLOW THRU SUBAREA(CFS) = 91.50
 LONGEST FLOWPATH FROM NODE 310.00 TO NODE
                                     304.00 =
***********************
 FLOW PROCESS FROM NODE 313.00 TO NODE 304.00 IS CODE = 81
     ______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
  50 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.340
 *USER SPECIFIED(SUBAREA):
 VEGETATED SLOPES (STEEP) RUNOFF COEFFICIENT = .6000
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.6000
 SUBAREA AREA(ACRES) = 19.13 SUBAREA RUNOFF(CFS) = 26.86
TOTAL AREA(ACRES) = 75.3 TOTAL RUNOFF(CFS) = 105.
 TC(MIN.) =
          19.41
 FLOW PROCESS FROM NODE 304.00 TO NODE 304.00 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <---
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES <
           ______
 TOTAL NUMBER OF STREAMS = 3
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE:
 TIME OF CONCENTRATION(MIN.) = 19.41
RAINFALL INTENSITY(INCH/HR) = 2.34
 TOTAL STREAM AREA(ACRES) = 75.29
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                              105.70
```

STREAM	RUNOFF	Tc	INTENSITY	AREA
NUMBER	(CFS)	(MIN.)	(INCH/HOUR)	(ACRE)
1	83.92	22.93	2.101	68.98
2	91.27	16.62	2.586	58.82
3	105.70	19.41	2.340	75.29

RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 3 STREAMS.

* *	PEAK	FLOW	RATE	TABLE	* *
-----	------	------	------	-------	-----

STREAM	RUNOFF	Tc	INTENSITY
NUMBER	(CFS)	(MIN.)	(INCH/HOUR)
1	242.60	16.62	2.586
2	259.32	19.41	2.340
3	253.02	22.93	2.101

COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:

PEAK FLOW RATE(CFS) = 259.32 Tc(MIN.) = 19.41
TOTAL AREA(ACRES) = 203.1
LONGEST FLOWPATH FROM NODE 110.00 TO NODE 304.00 = 6215.00 FEET.

END OF STUDY SUMMARY:

TOTAL AREA(ACRES) = 203.1 PEAK FLOW RATE(CFS) = 259.32 203.1 TC(MIN.) = 19.41

END OF RATIONAL METHOD ANALYSIS

CHAPTER 3

HYDROLOGIC ANALYSIS

3.4 – 100-Year Developed Condition AES Model Output

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 2003,1985,1981 HYDROLOGY MANUAL

(c) Copyright 1982-2015 Advanced Engineering Software (aes) Ver. 22.0 Release Date: 07/01/2015 License ID 1239

Analysis prepared by:

```
*********************** DESCRIPTION OF STUDY ******************
* Otay Ranch Village 4 South
* 100-year return interval: Proposed Condition
* DLN 0924, W.O. 3206-0002
 *****
 FILE NAME: R:\0924\HYD\CALCS\AES\PR100.DAT
 TIME/DATE OF STUDY: 12:45 06/22/2016
 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
 2003 SAN DIEGO MANUAL CRITERIA
 USER SPECIFIED STORM EVENT(YEAR) = 100.00
 6-HOUR DURATION PRECIPITATION (INCHES) =
 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00
 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.90
 SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD
 NOTE: USE MODIFIED RATIONAL METHOD PROCEDURES FOR CONFLUENCE ANALYSIS
 *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
    HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING
    WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR
    (FT) (FT) SIDE / SIDE / WAY (FT) (FT) (FT) (n)
=== ===== =====
                      30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0313 0.167 0.0150 17.0 10.0 0.020/0.020/0.020 0.50 1.50 0.0313 0.125 0.0150
 1

      20.0
      12.0
      0.020/0.020/0.020
      0.50
      1.50
      0.0313
      0.125
      0.0150

      16.0
      10.0
      0.020/0.020/0.020
      0.50
      1.50
      0.0313
      0.125
      0.0150

      26.0
      18.0
      0.020/0.020/0.020
      0.50
      1.50
      0.0313
      0.125
      0.0150

      44.0
      12.0
      0.020/0.020/0.020
      0.50
      1.50
      0.0313
      0.125
      0.0150

 5
 GLOBAL STREET FLOW-DEPTH CONSTRAINTS:
   1. Relative Flow-Depth = 0.50 FEET
     as (Maximum Allowable Street Flow Depth) - (Top-of-Curb)
   2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)
 *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
  OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
*************************
 FLOW PROCESS FROM NODE 100.00 TO NODE 101.00 IS CODE = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS
______
 *USER SPECIFIED(SUBAREA):
 PAVED SURFACE RUNOFF COEFFICIENT = .8500
 INITIAL SUBAREA FLOW-LENGTH(FEET) =
 UPSTREAM ELEVATION(FEET) = 437.63
 DOWNSTREAM ELEVATION(FEET) = 437.02
ELEVATION DIFFERENCE(FEET) = 0.61
 URBAN SUBAREA OVERLAND TIME OF FLOW(MIN.) = 3.467
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.192
 NOTE: RAINFALL INTENSITY IS BASED ON To = 5-MINUTE.
 SUBAREA RUNOFF(CFS) =
                            2.16
 TOTAL AREA(ACRES) =
                         0.41 TOTAL RUNOFF(CFS) =
*****************
 FLOW PROCESS FROM NODE 101.00 TO NODE 102.00 IS CODE = 62
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA <>>>
 >>>>(STREET TABLE SECTION # 6 USED) <<<<
```

```
-----
 UPSTREAM ELEVATION(FEET) = 437.02 DOWNSTREAM ELEVATION(FEET) = 432.91
 STREET LENGTH(FEET) = 413.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 44.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 12.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL (DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) =
                                                      0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0150
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.34
   HALFSTREET FLOOD WIDTH(FEET) = 10.47
   AVERAGE FLOW VELOCITY(FEET/SEC.) =
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.77
 STREET FLOW TRAVEL TIME(MIN.) = 3.01 Tc(MIN.) =
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.240
 *USER SPECIFIED(SUBAREA):
 PAVED SURFACE RUNOFF COEFFICIENT = .8500
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.850
 SUBAREA AREA(ACRES) = 1.51 SUBAREA RUNOFF(CFS) = 6.73
 TOTAL AREA(ACRES) =
                              PEAK FLOW RATE(CFS) =
                                                      8.55
                      1.9
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.38 HALFSTREET FLOOD WIDTH(FEET) = 12.49
 FLOW VELOCITY(FEET/SEC.) = 2.55 DEPTH*VELOCITY(FT*FT/SEC.) = 0.96
 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 102.00 =
                                                 473.00 FEET.
*******************
FLOW PROCESS FROM NODE 102.00 TO NODE 103.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <>>>
------
 ELEVATION DATA: UPSTREAM(FEET) = 428.00 DOWNSTREAM(FEET) = 427.00
 FLOW LENGTH(FEET) = 50.00 MANNING'S N = 0.013
 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 10.1 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 8.36
                                  NUMBER OF PIPES = 1
 ESTIMATED PIPE DIAMETER(INCH) = 18.00
 PIPE-FLOW(CFS) =
                  8.55
 PIPE TRAVEL TIME(MIN.) = 0.10 Tc(MIN.) =
                                        6.58
 LONGEST FLOWPATH FROM NODE
                        100.00 TO NODE
                                       103.00 =
                                                  523.00 FEET.
***********************
 FLOW PROCESS FROM NODE 102.00 TO NODE 103.00 IS CODE = 10
     _____
 >>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 1 <<<<
______
*************************
 FLOW PROCESS FROM NODE 110.00 TO NODE 111.00 IS CODE = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
 *USER SPECIFIED(SUBAREA):
 VEGETATED SLOPES (STEEP) RUNOFF COEFFICIENT = .6000
 INITIAL SUBAREA FLOW-LENGTH (FEET) = 100.00
 UPSTREAM ELEVATION(FEET) = 525.00
 DOWNSTREAM ELEVATION(FEET) = 515.00
 ELEVATION DIFFERENCE(FEET) =
                           10.00
 URBAN SUBAREA OVERLAND TIME OF FLOW(MIN.) =
                                     4.178
 WARNING: THE MAXIMUM OVERLAND FLOW SLOPE, 10.%, IS USED IN To CALCULATION!
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.192
 NOTE: RAINFALL INTENSITY IS BASED ON To = 5-MINUTE.
 NOTE: KAINFALL ...

SUBAREA RUNOFF(CFS) = 0.41

0.11 TOTAL RUNOFF(CFS) =
*********************
 FLOW PROCESS FROM NODE 111.00 TO NODE 112.00 IS CODE = 31
```

```
>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << <<
______
 ELEVATION DATA: UPSTREAM(FEET) = 515.00 DOWNSTREAM(FEET) = 451.00
 FLOW LENGTH(FEET) = 548.00 MANNING'S N = 0.013
 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 1.4 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 6.55
                                 NUMBER OF PIPES = 1
 ESTIMATED PIPE DIAMETER(INCH) = 18.00
 PIPE-FLOW(CFS) = 0.41
 PIPE TRAVEL TIME(MIN.) = 1.39
                           Tc(MIN.) =
 LONGEST FLOWPATH FROM NODE
                      110.00 TO NODE
                                    112.00 =
************************
 FLOW PROCESS FROM NODE 111.00 TO NODE 112.00 IS CODE = 81
 >>>>ADDITION OF SUBARFA TO MAINLINE PEAK FLOW<
______
 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.774
 *USER SPECIFIED(SUBAREA):
 VEGETATED SLOPES (STEEP) RUNOFF COEFFICIENT = .6000
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.6000
 SUBAREA AREA(ACRES) = 2.16 SUBAREA RUNOFF(CFS) = 7.48
TOTAL AREA(ACRES) = 2.3 TOTAL RUNOFF(CFS) = 7.8
 TC(MIN.) = 5.57
*******************
 FLOW PROCESS FROM NODE 112.00 TO NODE 117.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << <<
______
 ELEVATION DATA: UPSTREAM(FEET) = 446.00 DOWNSTREAM(FEET) = 435.00
 FLOW LENGTH(FEET) = 254.00 MANNING'S N = 0.013
 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 7.7 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 10.93
 ESTIMATED PIPE DIAMETER(INCH) = 18.00
                                 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 7.86
 PIPE TRAVEL TIME(MIN.) = 0.39
                           Tc(MIN.) =
                                     5.96
                       110.00 TO NODE 117.00 =
 LONGEST FLOWPATH FROM NODE
                                              902.00 FEET.
*************************
 FLOW PROCESS FROM NODE 117.00 TO NODE 117.00 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <>>>
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 5.96
RAINFALL INTENSITY(INCH/HR) = 5.53
 TOTAL STREAM AREA(ACRES) = 2.27
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                7.86
************************
 FLOW PROCESS FROM NODE 115.00 TO NODE 116.00 IS CODE = 21
>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
 *USER SPECIFIED(SUBAREA):
 DENSE RESIDENTIAL (R2,R3) RUNOFF COEFFICIENT = .7500
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 65.00
 UPSTREAM ELEVATION(FEET) = 526.45
 DOWNSTREAM ELEVATION(FEET) = 525.80
ELEVATION DIFFERENCE(FEET) = 0.65
 URBAN SUBAREA OVERLAND TIME OF FLOW(MIN.) = 5.079
 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.129
 SUBAREA RUNOFF(CFS) = 1.24
 TOTAL AREA(ACRES) =
                   0.27
                         TOTAL RUNOFF(CFS) =
FLOW PROCESS FROM NODE 116.00 TO NODE 117.00 IS CODE = 61
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STANDARD CURB SECTION USED) <>>>
______
```

```
STREET LENGTH(FEET) = 721.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 16.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 8.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.28
   HALFSTREET FLOOD WIDTH(FEET) = 7.57
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 6.81
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.89
 STREET FLOW TRAVEL TIME(MIN.) = 1.77 Tc(MIN.) =
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.057
 *USER SPECIFIED(SUBAREA):
 DENSE RESIDENTIAL (R2,R3) RUNOFF COEFFICIENT = .7500
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.750
 SUBAREA AREA(ACRES) = 4.28 SUBAREA RUNOFF(CFS) = 16.23
TOTAL AREA(ACRES) = 4.6 PEAK FLOW RATE(CFS) =
                                 PEAK FLOW RATE(CFS) = 17.26
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.33 HALFSTREET FLOOD WIDTH(FEET) = 9.97
 FLOW VELOCITY(FEET/SEC.) = 7.76 DEPTH*VELOCITY(FT*FT/SEC.) = 2.53 LONGEST FLOWPATH FROM NODE 115.00 TO NODE 117.00 = 786.00 FE
                                                        786.00 FEET.
 FLOW PROCESS FROM NODE 117.00 TO NODE 117.00 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFIJIENCE<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 6.84
RAINFALL INTENSITY(INCH/HR) = 5.06
 TOTAL STREAM AREA(ACRES) = 4.55
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                    17.26
 ** CONFLUENCE DATA **
 STREAM RUNOFF
                     Tc
                             INTENSITY
                     (MIN.) (INCH/HOUR) (ACRE)
 NUMBER
           (CFS)
             7.86
           7.86 5.96 5.529 2.27
17.26 6.84 5.057 4.55
   1
                                             4.55
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
 STREAM RUNOFF TC INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR)
                  5.96 5.529
6.84 5.057
            22.89
    1
            24.45
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 24.45 Tc(MIN.) = TOTAL AREA(ACRES) = 6.8
                                            6.84
 LONGEST FLOWPATH FROM NODE 110.00 TO NODE 117.00 =
                                                       902.00 FEET.
 FLOW PROCESS FROM NODE 117.00 TO NODE 118.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <>>>
-----
 ELEVATION DATA: UPSTREAM(FEET) = 433.00 DOWNSTREAM(FEET) = 427.00
 FLOW LENGTH(FEET) = 272.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 24.0 INCH PIPE IS 15.8 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 11.18
 ESTIMATED PIPE DIAMETER(INCH) = 24.00
                                      NUMBER OF PIPES = 1
```

UPSTREAM ELEVATION(FEET) = 525.80 DOWNSTREAM ELEVATION(FEET) = 438.25

```
PIPE-FLOW(CFS) =
                  24.45
 PIPE TRAVEL TIME(MIN.) = 0.41 Tc(MIN.) =
                                          7.25
 LONGEST FLOWPATH FROM NODE 110.00 TO NODE 118.00 =
                                                  1174.00 FEET.
*******************
 FLOW PROCESS FROM NODE 118.00 TO NODE 118.00 IS CODE = 1
>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <--
______
 TOTAL NUMBER OF STREAMS = 3
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 7.25
 RAINFALL INTENSITY(INCH/HR) =
                           4.87
 TOTAL STREAM AREA(ACRES) = 6.82
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
 FLOW PROCESS FROM NODE 120.00 TO NODE 121.00 IS CODE = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
 *USER SPECIFIED(SUBAREA):
 DENSE RESIDENTIAL (R2,R3) RUNOFF COEFFICIENT = .7500
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 65.00
 UPSTREAM ELEVATION(FEET) = 451.55
 DOWNSTREAM ELEVATION(FEET) = 450.90
ELEVATION DIFFERENCE(FEET) = 0.65
 URBAN SUBAREA OVERLAND TIME OF FLOW(MIN.) =
                                       5.079
 WARNING: INITIAL SUBAREA FLOW PATH LENGTH IS GREATER THAN
         THE MAXIMUM OVERLAND FLOW LENGTH = 65.00
         (Reference: Table 3-1B of Hydrology Manual)
         THE MAXIMUM OVERLAND FLOW LENGTH IS USED IN To CALCULATION!
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.129
 SUBAREA RUNOFF(CFS) = 1.43
                    0.31 TOTAL RUNOFF(CFS) =
 TOTAL AREA(ACRES) =
                                                 1.43
*********************
 FLOW PROCESS FROM NODE 121.00 TO NODE 122.00 IS CODE = 61
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STANDARD CURB SECTION USED) <>>>
------
 UPSTREAM ELEVATION(FEET) = 446.20 DOWNSTREAM ELEVATION(FEET) = 430.50
 STREET LENGTH(FEET) = 446.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 16.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 8.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) =
                                                         0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.30
   HALFSTREET FLOOD WIDTH(FEET) =
                               8.66
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.91
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.17
 STREET FLOW TRAVEL TIME(MIN.) = 1.90 Tc(MIN.) =
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.992
 *USER SPECIFIED(SUBAREA):
 DENSE RESIDENTIAL (R2,R3) RUNOFF COEFFICIENT = .7500
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.750
 SUBAREA AREA(ACRES) = 2.84 SUBAREA RUNOFF(CFS) = 10.63
 TOTAL AREA(ACRES) =
                               PEAK FLOW RATE(CFS) =
                       3.1
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.35 HALFSTREET FLOOD WIDTH(FEET) = 11.03
 FLOW VELOCITY(FEET/SEC.) = 4.42 DEPTH*VELOCITY(FT*FT/SEC.) = 1.53
 LONGEST FLOWPATH FROM NODE 120.00 TO NODE 122.00 =
                                                   511.00 FEET.
*******************
 FLOW PROCESS FROM NODE 121.00 TO NODE 122.00 IS CODE = 81
```

```
>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.992
 *USER SPECIFIED(SUBAREA):
 VEGETATED SLOPES (HILLY) RUNOFF COEFFICIENT = .6000
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.7402
 SUBAREA AREA(ACRES) = 0.22 SUBAREA RUNOFF(CFS) = 0.66
TOTAL AREA(ACRES) = 3.4 TOTAL RUNOFF(CFS) = 12.4
 TC(MIN.) =
            6.98
*********************
 FLOW PROCESS FROM NODE 122.00 TO NODE 118.00 IS CODE = 1
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <>>>
______
 TOTAL NUMBER OF STREAMS = 3
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 6.98
RAINFALL INTENSITY(INCH/HR) = 4.99
TOTAL STREAM AREA(ACRES) = 3.37
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                   12.45
*******************
 FLOW PROCESS FROM NODE 125.00 TO NODE 126.00 IS CODE = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
 *USER SPECIFIED(SUBAREA):
 DENSE RESIDENTIAL (R2,R3) RUNOFF COEFFICIENT = .7500
 INITIAL SUBAREA FLOW-LENGTH(FEET) =
                                   65.00
 UPSTREAM ELEVATION(FEET) = 453.85
 DOWNSTREAM ELEVATION(FEET) = 453.20
ELEVATION DIFFERENCE(FEET) = 0.65
                                        5.079
 URBAN SUBAREA OVERLAND TIME OF FLOW(MIN.) =
 WARNING: INITIAL SUBAREA FLOW PATH LENGTH IS GREATER THAN
         THE MAXIMUM OVERLAND FLOW LENGTH = 65.00
         (Reference: Table 3-1B of Hydrology Manual)
         THE MAXIMUM OVERLAND FLOW LENGTH IS USED IN TC CALCULATION!
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.129
 SUBAREA RUNOFF(CFS) =
                       0.41
 TOTAL AREA(ACRES) =
                      0.09
                            TOTAL RUNOFF(CFS) =
*******************
 FLOW PROCESS FROM NODE 126.00 TO NODE 127.00 IS CODE = 61
______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STANDARD CURB SECTION USED) < < < <
______
 UPSTREAM ELEVATION(FEET) = 453.20 DOWNSTREAM ELEVATION(FEET) = 430.50
 STREET LENGTH(FEET) = 655.00
                             CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 16.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK (FEET) = 8.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                    5.74
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.29
   HALFSTREET FLOOD WIDTH(FEET) =
                                8.03
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.76
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.08
                                               7.98
 STREET FLOW TRAVEL TIME(MIN.) = 2.90 Tc(MIN.) =
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.579
 *USER SPECIFIED(SUBAREA):
 DENSE RESIDENTIAL (R2,R3) RUNOFF COEFFICIENT = .7500
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.750
SUBAREA AREA(ACRES) = 3.06
SUBAREA RUNOFF(CFS) = 10.51
TOTAL AREA(ACRES) = 3.1
PEAK FLOW RATE(CFS) =
```

```
END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.34 HALFSTREET FLOOD WIDTH(FEET) = 10.66
 FLOW VELOCITY(FEET/SEC.) = 4.31 DEPTH*VELOCITY(FT*FT/SEC.) = 1.46
 LONGEST FLOWPATH FROM NODE 125.00 TO NODE 127.00 =
                                                             720.00 FEET.
*************************
 FLOW PROCESS FROM NODE 127.00 TO NODE 118.00 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <><
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES << < <
______
 TOTAL NUMBER OF STREAMS = 3
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE:
 TIME OF CONCENTRATION(MIN.) = 7.98
RAINFALL INTENSITY(INCH/HR) = 4.58
 TOTAL STREAM AREA(ACRES) = 3.15
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                       10.82
 ** CONFLUENCE DATA **
 STREAM RUNOFF TC INTENSITY AREA
NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE)

      24.45
      7.25
      4.872

      12.45
      6.98
      4.992

    1
                                              6.82
     2
                                                 3.37
            10.82 7.98
                                4.579
                                                3.15
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 3 STREAMS.
 ** PEAK FLOW RATE TABLE **
 STREAM RUNOFF TC INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR)

      45.78
      6.98
      4.992

      46.43
      7.25
      4.872

      45.22
      7.98
      4.579

    1
     2
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 46.43 Tc(MIN.) = 7.25 TOTAL AREA(ACRES) = 13.3
                          13.3
 LONGEST FLOWPATH FROM NODE 110.00 TO NODE 118.00 = 1174.00 FEET.
 FLOW PROCESS FROM NODE 118.00 TO NODE 103.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<-<-
______
 ELEVATION DATA: UPSTREAM(FEET) = 427.00 DOWNSTREAM(FEET) = 426.00
 FLOW LENGTH(FEET) = 130.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 36.0 INCH PIPE IS 25.2 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 8.79
ESTIMATED PIPE DIAMETER(INCH) = 36.00
                                          NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 46.43
 PIPE TRAVEL TIME(MIN.) = 0.25
                                  Tc(MIN.) =
                                                 7.50
 LONGEST FLOWPATH FROM NODE 110.00 TO NODE 103.00 = 1304.00 FEET.
*********************
 FLOW PROCESS FROM NODE 130.00 TO NODE 130.00 IS CODE = 11
 >>>>CONFLUENCE MEMORY BANK # 1 WITH THE MAIN-STREAM MEMORY<
______
 ** MAIN STREAM CONFLUENCE DATA **
 STREAM RUNOFF TC INTENSITY AREA

NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE)

1 46.43 7.50 4.768 13.34

LONGEST FLOWPATH FROM NODE 110.00 TO NODE 130.00 = 1304.00 FEET.
 ** MEMORY BANK \# 1 CONFLUENCE DATA **
 STREAM RUNOFF TC INTENSITY
                                             AREA
 NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE)

1 8.55 6.58 5.189 1.92

LONGEST FLOWPATH FROM NODE 100.00 TO NODE 130.00 = 523.00 FEET.
  ** PEAK FLOW RATE TABLE **
 STREAM RUNOFF TC INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR)
```

```
49.28 6.58 5.189
          54.29
                    7.50
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 54.29 Tc(MIN.) = TOTAL AREA(ACRES) = 15.3
 TOTAL AREA(ACRES) =
 FLOW PROCESS FROM NODE 103.00 TO NODE 103.00 IS CODE = 12
______
 >>>> CLEAR MEMORY BANK # 1 <<<<<
______
**********************
 FLOW PROCESS FROM NODE 103.00 TO NODE 128.00 IS CODE = 31
 >>>>COMPLITE PIPE-FIOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <>>>
ELEVATION DATA: UPSTREAM(FEET) = 426.00 DOWNSTREAM(FEET) = 422.00
 FLOW LENGTH(FEET) = 460.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 36.0 INCH PIPE IS 27.2 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 9.47
 ESTIMATED PIPE DIAMETER(INCH) = 36.00
                                    NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 54.29
 PIPE TRAVEL TIME(MIN.) = 0.81
LONGEST FLOWPATH FROM NODE 11
                            Tc(MIN.) =
                                          8.31
                         110.00 TO NODE 128.00 =
                                                  1764 00 FEET.
**************************
 FLOW PROCESS FROM NODE 128.00 TO NODE 128.00 IS CODE = 1
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <--
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 8.31
 RAINFALL INTENSITY(INCH/HR) = 4.46
 TOTAL STREAM AREA(ACRES) = 15.26
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                  54.29
 FLOW PROCESS FROM NODE 130.00 TO NODE 131.00 IS CODE = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
 *USER SPECIFIED(SUBAREA):
 DENSE RESIDENTIAL (R2,R3) RUNOFF COEFFICIENT = .7500
 INITIAL SUBAREA FLOW-LENGTH(FEET) =
 UPSTREAM ELEVATION(FEET) = 444.15
 DOWNSTREAM ELEVATION(FEET) = 443.50
ELEVATION DIFFERENCE(FEET) = 0.65
 URBAN SUBAREA OVERLAND TIME OF FLOW(MIN.) =
                                       5.079
 WARNING: INITIAL SUBAREA FLOW PATH LENGTH IS GREATER THAN
         THE MAXIMIM OVERLAND FLOW LENGTH =
                                        65.00
         (Reference: Table 3-1B of Hydrology Manual)
         THE MAXIMUM OVERLAND FLOW LENGTH IS USED IN To CALCULATION!
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.129
 SUBAREA RUNOFF(CFS) = 0.46
                           TOTAL RUNOFF(CFS) =
 TOTAL AREA(ACRES) =
                     0.10
*************************
 FLOW PROCESS FROM NODE 131.00 TO NODE 132.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <>>>
______
 ELEVATION DATA: UPSTREAM(FEET) = 435.80 DOWNSTREAM(FEET) = 428.00
 FLOW LENGTH(FEET) = 995.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 2.8 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 2.64
 ESTIMATED PIPE DIAMETER(INCH) = 18.00
                                   NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) =
                  0.46
 PIPE TRAVEL TIME(MIN.) = 6.29 Tc(MIN.) = 11.37
LONGEST FLOWPATH FROM NODE 130.00 TO NODE 132.00 = 1060.00 FEET.
```

```
***********************
 FLOW PROCESS FROM NODE 131.00 TO NODE 132.00 IS CODE = 81
______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.645
 *USER SPECIFIED(SUBAREA):
 DENSE RESIDENTIAL (R2.R3) RUNOFF COEFFICIENT = .7500
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.7500
 SUBAREA AREA(ACRES) = 6.96 SUBAREA RUNOFF(CFS) = 19.03
TOTAL AREA(ACRES) = 7.1 TOTAL RUNOFF(CFS) = 19.3
 TC(MIN.) = 11.37
************************
 FLOW PROCESS FROM NODE 132.00 TO NODE 128.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <>>>
ELEVATION DATA: UPSTREAM(FEET) = 438.50 DOWNSTREAM(FEET) = 422.00
 FLOW LENGTH(FEET) = 115.00 MANNING'S N = 0.013
 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 9.1 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 21.48
 ESTIMATED PIPE DIAMETER(INCH) = 18.00
                                  NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) =
                 19.30
 PIPE TRAVEL TIME(MIN.) = 0.09
                           Tc(MIN.) = 11.46
 LONGEST FLOWPATH FROM NODE 130.00 TO NODE
                                       128.00 =
                                                1175.00 FEET.
*********************
 FLOW PROCESS FROM NODE 128.00 TO NODE 128.00 IS CODE = 1
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <---
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES << < <
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 11.46
 RAINFALL INTENSITY(INCH/HR) =
 TOTAL STREAM AREA(ACRES) = 7.06
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                19.30
 ** CONFLUENCE DATA **
 STREAM RUNOFF
                  Tc
                         INTENSITY
          (CFS) (MIN.) (INCH/HOUR)
54.29 8.31 4.463
19.30 11.46 3.627
 NUMBER
                                     (ACRE)
                                  15.26
    1
    2
                                       7.06
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
 STREAM RUNOFF Tc
                          INTENSITY
                 (MIN.) (INCH/HOUR)
 NUMBER
          (CFS)
          68.28 8.31 4.463
63.42 11.46 3.627
   1
    2.
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 68.28 Tc(MIN.) = TOTAL AREA(ACRES) = 22.3
                                       8.31
                                      128.00 =
 LONGEST FLOWPATH FROM NODE 110.00 TO NODE
 FLOW PROCESS FROM NODE 128.00 TO NODE 137.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
_____
 ELEVATION DATA: UPSTREAM(FEET) = 422.00 DOWNSTREAM(FEET) = 414.00
 FLOW LENGTH(FEET) = 610.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 36.0 INCH PIPE IS 27.8 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 11.66
 ESTIMATED PIPE DIAMETER(INCH) = 36.00
                                  NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 68.28
```

```
************************
 FLOW PROCESS FROM NODE 137.00 TO NODE 137.00 IS CODE = 1
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <---
______
 TOTAL NUMBER OF STREAMS = 2
 CONFIJIENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 9.18
RAINFALL INTENSITY(INCH/HR) = 4.18
TOTAL STREAM AREA(ACRES) = 22.32
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                   68.28
********************
 FLOW PROCESS FROM NODE 135.00 TO NODE 136.00 IS CODE = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
 *USER SPECIFIED(SUBAREA):
 PAVED SURFACE RUNOFF COEFFICIENT = .8500
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 103.00
 UPSTREAM ELEVATION(FEET) = 432.50
 DOWNSTREAM ELEVATION(FEET) = 431.60
ELEVATION DIFFERENCE(FEET) = 0.90
 URBAN SUBAREA OVERLAND TIME OF FLOW(MIN.) =
                                        3.568
 WARNING: INITIAL SUBAREA FLOW PATH LENGTH IS GREATER THAN
         THE MAXIMUM OVERLAND FLOW LENGTH = 57.48
         (Reference: Table 3-1B of Hydrology Manual)
         THE MAXIMUM OVERLAND FLOW LENGTH IS USED IN To CALCULATION!
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.192
 NOTE: RAINFALL INTENSITY IS BASED ON Tc = 5-MINUTE.
 SUBAREA RUNOFF(CFS) =
                       1.32
 TOTAL AREA(ACRES) =
                      0.25 TOTAL RUNOFF(CFS) =
********************
 FLOW PROCESS FROM NODE 136.00 TO NODE 137.00 IS CODE = 61
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STANDARD CURB SECTION USED) < < < <
______
 UPSTREAM ELEVATION(FEET) = 430.75 DOWNSTREAM ELEVATION(FEET) = 418.50
 STREET LENGTH(FEET) = 1000.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 44.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 22.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                    9.02
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.37
   HALFSTREET FLOOD WIDTH(FEET) = 12.27
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.78
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.03
 STREET FLOW TRAVEL TIME(MIN.) = 6.00 Tc(MIN.) = 9.57
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.073
 *USER SPECIFIED(SUBAREA):
 COMMERCIAL AREA RUNOFF COEFFICIENT = .8500
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.850
 SUBAREA AREA(ACRES) = 4.30 SUBAREA RUNOFF(CFS) = 14.89
 TOTAL AREA(ACRES) =
                                 PEAK FLOW RATE(CFS) = 15.75
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.43 HALFSTREET FLOOD WIDTH(FEET) = 15.31
 FLOW VELOCITY(FEET/SEC.) = 3.20 DEPTH*VELOCITY(FT*FT/SEC.) = 1.38
 LONGEST FLOWPATH FROM NODE
                         135.00 TO NODE
                                          137.00 =
                                                   1103.00 FEET.
*********************
 FLOW PROCESS FROM NODE 137.00 TO NODE 137.00 IS CODE = 1
```

>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <--

```
>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES << < <
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 9.57
 RAINFALL INTENSITY(INCH/HR) =
 TOTAL STREAM AREA(ACRES) =
                          4.55
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                15.75
 ** CONFLUENCE DATA **
 STREAM RUNOFF
                   Tc
                          INTENSITY
 NUMBER
          (CFS)
                  (MIN.) (INCH/HOUR) (ACRE)
    1
           68.28
                  9.18 4.185
                                       22.32
          15.75 9.57
                            4.073
                                         4.55
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
 STREAM RUNOFF TC INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR)
          83.38 9.18 4.185
82.21 9.57 4.073
    1
    2
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 83.38 Tc(MIN.) = TOTAL AREA(ACRES) = 26.9
                                       9.18
 LONGEST FLOWPATH FROM NODE 110.00 TO NODE
                                      137.00 =
                                                 2374.00 FEET.
*********************
 FLOW PROCESS FROM NODE 137.00 TO NODE 138.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <>>>
______
 ELEVATION DATA: UPSTREAM(FEET) = 412.00 DOWNSTREAM(FEET) = 411.00
 FLOW LENGTH(FEET) = 75.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 39.0 INCH PIPE IS 29.5 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) = 12.37
 ESTIMATED PIPE DIAMETER(INCH) = 39.00
                                  NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) =
                  83.38
 PIPE TRAVEL TIME(MIN.) = 0.10 Tc(MIN.) =
                                        9.28
 LONGEST FLOWPATH FROM NODE
                        110.00 TO NODE
                                        138.00 =
 FLOW PROCESS FROM NODE 138.00 TO NODE 138.00 IS CODE = 10
 >>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 1 <<<<
______
 FLOW PROCESS FROM NODE 140.00 TO NODE 141.00 IS CODE = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS
______
 *USER SPECIFIED(SUBAREA):
 VEGETATED SLOPES (STEEP) RUNOFF COEFFICIENT = .6000
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 100.00
                        460.00
 UPSTREAM ELEVATION(FEET) =
                         450.00
 DOWNSTREAM ELEVATION(FEET) =
 ELEVATION DIFFERENCE(FEET) =
                           10.00
 URBAN SUBAREA OVERLAND TIME OF FLOW(MIN.) = 4.178
 WARNING: THE MAXIMUM OVERLAND FLOW SLOPE, 10.%, IS USED IN To CALCULATION!
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.192
 NOTE: RAINFALL INTENSITY IS BASED ON TC = 5-MINUTE.
 SUBAREA RUNOFF(CFS) =
                      0.74
 TOTAL AREA(ACRES) =
                    0.20 TOTAL RUNOFF(CFS) =
*********************
 FLOW PROCESS FROM NODE 141.00 TO NODE 142.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <>>>
ELEVATION DATA: UPSTREAM(FEET) = 450.00 DOWNSTREAM(FEET) = 425.00
 FLOW LENGTH(FEET) = 652.00 MANNING'S N = 0.013
```

```
ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 2.4 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 5.31
 ESTIMATED PIPE DIAMETER(INCH) = 18.00
                                  NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) =
                 0.74
 PIPE TRAVEL TIME(MIN.) = 2.05
                             Tc(MIN.) =
 LONGEST FLOWPATH FROM NODE
                        140.00 TO NODE
                                      142.00 =
*********************
 FLOW PROCESS FROM NODE 141.00 TO NODE 142.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.375
 *USER SPECIFIED(SUBAREA):
 VEGETATED SLOPES (STEEP) RUNOFF COEFFICIENT = .6000
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.6000
 SUBAREA AREA(ACRES) = 2.56 SUBAREA RUNOFF(CFS) = TOTAL AREA(ACRES) = 2.8 TOTAL RUNOFF(CFS) =
                                             8.26
 TC(MIN.) =
           6.23
*********************
 FLOW PROCESS FROM NODE 142.00 TO NODE 147.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << <<
______
 ELEVATION DATA: UPSTREAM(FEET) = 420.00 DOWNSTREAM(FEET) = 417.00
 FLOW LENGTH(FEET) = 271.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 12.7 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 6.66
 ESTIMATED PIPE DIAMETER(INCH) = 18.00
                                  NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) =
                  8.90
 PIPE TRAVEL TIME(MIN.) = 0.68 Tc(MIN.) =
 LONGEST FLOWPATH FROM NODE 140.00 TO NODE 147.00 = 1023.00 FEET.
***********************
 FLOW PROCESS FROM NODE 147.00 TO NODE 147.00 IS CODE = 1
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <---
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 6.90
 RAINFALL INTENSITY(INCH/HR) = 5.03
TOTAL STREAM AREA(ACRES) = 2.76
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                8.90
*******************
 FLOW PROCESS FROM NODE 145.00 TO NODE 146.00 IS CODE = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
 *IISER SPECIFIED(SUBAREA):
 DENSE RESIDENTIAL (R2,R3) RUNOFF COEFFICIENT = .7500
 INITIAL SUBAREA FLOW-LENGTH(FEET) =
                                65.00
 UPSTREAM ELEVATION(FEET) = 449.15
 DOWNSTREAM ELEVATION(FEET) = 448.50
 ELEVATION DIFFERENCE(FEET) =
                           0.65
 URBAN SUBAREA OVERLAND TIME OF FLOW(MIN.) = 5.079
 WARNING: INITIAL SUBAREA FLOW PATH LENGTH IS GREATER THAN
        THE MAXIMUM OVERLAND FLOW LENGTH = 65.00
        (Reference: Table 3-1B of Hydrology Manual)
        THE MAXIMUM OVERLAND FLOW LENGTH IS USED IN To CALCULATION!
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.129
                     0.51
 SUBAREA RUNOFF(CFS) =
 TOTAL AREA(ACRES) =
                    0.11 TOTAL RUNOFF(CFS) =
                                             0.51
*********************
 FLOW PROCESS FROM NODE 146.00 TO NODE 147.00 IS CODE = 61
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STANDARD CURB SECTION USED) <>>>
UPSTREAM ELEVATION(FEET) = 448.50 DOWNSTREAM ELEVATION(FEET) = 421.50
 STREET LENGTH(FEET) = 614.00 CURB HEIGHT(INCHES) = 6.0
```

```
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 8.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL (DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                     5.86
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.28
   HALFSTREET FLOOD WIDTH(FEET) =
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 4.15
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.16
                                               7.55
 STREET FLOW TRAVEL TIME(MIN.) = 2.47 Tc(MIN.) =
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.748
  *USER SPECIFIED(SUBAREA):
 DENSE RESIDENTIAL (R2,R3) RUNOFF COEFFICIENT = .7500
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.750
 SUBAREA AREA(ACRES) = 2.98 SUBAREA RUNOFF(CFS) = 10.61
                        3.1
 TOTAL AREA(ACRES) =
                                 PEAK FLOW RATE(CFS) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.33 HALFSTREET FLOOD WIDTH(FEET) = 10.22
 FLOW VELOCITY(FEET/SEC.) = 4.73 DEPTH*VELOCITY(FT*FT/SEC.) = 1.57
 LONGEST FLOWPATH FROM NODE 145.00 TO NODE 147.00 = 679.00 FEET.
*********************
 FLOW PROCESS FROM NODE 147.00 TO NODE 147.00 IS CODE = 1
 _____
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <>>>
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES <
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 7.55
 RAINFALL INTENSITY(INCH/HR) =
                            4.75
 TOTAL STREAM AREA(ACRES) = 3.09
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                   11.00
 ** CONFLUENCE DATA **
 STREAM RUNOFF
                    TC
                            INTENSITY
                                         AREA
                   (MIN.) (INCH/HOUR)
           (CFS)
                                         (ACRE)
 NUMBER
            8.90 6.90 5.029 2.76
   1
           11.00
                   7.55
                               4.748
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
 STREAM RUNOFF Tc
                           INTENSITY
           (CFS)
 NUMBER
                   (MIN.) (INCH/HOUR)
                  6.90
7.55
                         5.029
4.748
           18.97
    1
          19.41
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 19.41 Tc(MIN.) = TOTAL AREA(ACRES) = 5.8
                                          7.55
 LONGEST FLOWPATH FROM NODE 140.00 TO NODE 147.00 =
                                                    1023.00 FEET.
 FLOW PROCESS FROM NODE 147.00 TO NODE 148.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << < <
------
 ELEVATION DATA: UPSTREAM(FEET) = 417.00 DOWNSTREAM(FEET) = 411.00
 FLOW LENGTH(FEET) = 192.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 21.0 INCH PIPE IS 13.3 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 12.06
 ESTIMATED PIPE DIAMETER(INCH) = 21.00
                                     NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 19.41
 PIPE TRAVEL TIME(MIN.) = 0.27 Tc(MIN.) = 7.81
```

```
LONGEST FLOWPATH FROM NODE 140.00 TO NODE
                                        148.00 =
*******************
 FLOW PROCESS FROM NODE 148.00 TO NODE 148.00 IS CODE = 1
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <---
______
 TOTAL NUMBER OF STREAMS = 3
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 7.81
RAINFALL INTENSITY(INCH/HR) = 4.64
 RAINFALL INTENSITY(INCH/HR) =
 TOTAL STREAM AREA(ACRES) = 5.85
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                  19.41
*************************
 FLOW PROCESS FROM NODE 150.00 TO NODE 151.00 IS CODE = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
 *USER SPECIFIED(SUBAREA):
 DENSE RESIDENTIAL (R2,R3) RUNOFF COEFFICIENT = .7500
 INITIAL SUBAREA FLOW-LENGTH(FEET) =
                                  65.00
 UPSTREAM ELEVATION(FEET) = 453.45
 DOWNSTREAM ELEVATION(FEET) = 452.80
ELEVATION DIFFERENCE(FEET) = 0.65
 URBAN SUBAREA OVERLAND TIME OF FLOW(MIN.) = 5.079
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.129
 SUBAREA RUNOFF(CFS) = 0.46
 TOTAL AREA(ACRES) =
                     0.10 TOTAL RUNOFF(CFS) =
*********************
 FLOW PROCESS FROM NODE 151.00 TO NODE 152.00 IS CODE = 61
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STANDARD CURB SECTION USED) << < <
______
 UPSTREAM ELEVATION(FEET) = 452.80 DOWNSTREAM ELEVATION(FEET) = 415.80
 STREET LENGTH(FEET) = 900.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 16.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 8.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                   6.03
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.28
   HALFSTREET FLOOD WIDTH(FEET) =
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 4.04
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.15
 STREET FLOW TRAVEL TIME(MIN.) = 3.71 Tc(MIN.) =
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.302
 *USER SPECIFIED(SUBAREA):
 DENSE RESIDENTIAL (R2,R3) RUNOFF COEFFICIENT = .7500
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.750
 SUBAREA AREA(ACRES) = 3.39 SUBAREA RUNOFF(CFS) = 10.94
                              PEAK FLOW RATE(CFS) = 11.26
 TOTAL AREA(ACRES) =
                      3.5
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.34 HALFSTREET FLOOD WIDTH(FEET) = 10.47
 FLOW VELOCITY(FEET/SEC.) = 4.64 DEPTH*VELOCITY(FT*FT/SEC.) = 1.56
LONGEST FLOWPATH FROM NODE 150.00 TO NODE 152.00 = 965.00 FEET.
******************
 FLOW PROCESS FROM NODE 152.00 TO NODE 148.00 IS CODE = 1
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <--
______
 TOTAL NUMBER OF STREAMS = 3
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 8.79
```

```
RAINFALL INTENSITY(INCH/HR) = 4.30
 TOTAL STREAM AREA(ACRES) = 3.49
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                  11.26
************************
 FLOW PROCESS FROM NODE 155.00 TO NODE 156.00 IS CODE = 21
>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
 *USER SPECIFIED(SUBAREA):
 DENSE RESIDENTIAL (R2,R3) RUNOFF COEFFICIENT = .7500
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 65.00
 UPSTREAM ELEVATION(FEET) = 430.25
 DOWNSTREAM ELEVATION(FEET) = 429.60
ELEVATION DIFFERENCE(FEET) = 0.65
 URBAN SUBAREA OVERLAND TIME OF FLOW(MIN.) =
 WARNING: INITIAL SUBAREA FLOW PATH LENGTH IS GREATER THAN
         THE MAXIMUM OVERLAND FLOW LENGTH = 65.00
         (Reference: Table 3-1B of Hydrology Manual)
         THE MAXIMUM OVERLAND FLOW LENGTH IS USED IN To CALCULATION!
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.129
 SUBAREA RUNOFF(CFS) = 0.46
 TOTAL AREA(ACRES) =
                      0.10 TOTAL RUNOFF(CFS) =
*******************
 FLOW PROCESS FROM NODE 156.00 TO NODE 157.00 IS CODE = 61
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STANDARD CURB SECTION USED) <>>>
______
 UPSTREAM ELEVATION(FEET) = 429.60 DOWNSTREAM ELEVATION(FEET) = 415.80
 STREET LENGTH(FEET) = 476.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 16.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 8.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL (DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                    2.58
   STREETFLOW MODEL RESULTS HISTNG ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.24
   HALFSTREET FLOOD WIDTH(FEET) = 5.64
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.96
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.71
 STREET FLOW TRAVEL TIME(MIN.) = 2.68 Tc(MIN.) = 7.76
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.662
 *USER SPECIFIED(SUBAREA):
 DENSE RESIDENTIAL (R2,R3) RUNOFF COEFFICIENT = .7500
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.750
 SUBAREA AREA(ACRES) = 1.20 SUBAREA RUNOFF(CFS) = 4.20
 TOTAL AREA(ACRES) =
                        1.3
                                 PEAK FLOW RATE(CFS) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.28 HALFSTREET FLOOD WIDTH(FEET) = 7.52
 FLOW VELOCITY(FEET/SEC.) = 3.33 DEPTH*VELOCITY(FT*FT/SEC.) = 0.92
 LONGEST FLOWPATH FROM NODE
                         155.00 TO NODE
                                        157.00 = 541.00 FEET.
 FLOW PROCESS FROM NODE 157.00 TO NODE 148.00 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <---
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES <
______
 TOTAL NUMBER OF STREAMS = 3
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE:
 TIME OF CONCENTRATION(MIN.) = 7.76
RAINFALL INTENSITY(INCH/HR) = 4.66
 TOTAL STREAM AREA(ACRES) = 1.30
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                  4.55
 ** CONFLUENCE DATA **
```

```
RUNOFF TC INTENSITY
(CFS) (MIN.) (INCH/HOUR)
19.41 7.81 4.644
11.26 8.79 4.302
4.55 7.76 4.662
 STREAM
 NUMBER
                                     (ACRE)
                                     5.85
   1
    2
                                        3.49
    3
                                        1.30
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFIJIENCE FORMILIA LISED FOR 3 STREAMS.
 ** PEAK FLOW RATE TABLE **
                         INTENSITY
 STREAM RUNOFF TC
                 (MIN.) (INCH/HOUR)
 NUMBER
          (CFS)
                        4.662
                  7.76
    1
         33.82 7.76
33.94 7.81
          33.82
    2
                          4.644
    3
          33.44
                  8.79
                          4.302
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 33.94 Tc(MIN.) = TOTAL AREA(ACRES) = 10.6
 LONGEST FLOWPATH FROM NODE 140.00 TO NODE 148.00 =
                                               1215.00 FEET.
 FLOW PROCESS FROM NODE 148.00 TO NODE 138.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << <<
______
 ELEVATION DATA: UPSTREAM(FEET) = 411.00 DOWNSTREAM(FEET) = 410.00
 FLOW LENGTH(FEET) = 122.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 30.0 INCH PIPE IS 23.7 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 8.17
 ESTIMATED PIPE DIAMETER(INCH) = 30.00
                                  NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) =
                 33.94
 PIPE TRAVEL TIME(MIN.) = 0.25 Tc(MIN.) =
 LONGEST FLOWPATH FROM NODE 140.00 TO NODE 138.00 =
                                               1337.00 FEET.
***********************
 FLOW PROCESS FROM NODE 138.00 TO NODE 138.00 IS CODE = 11
 >>>>CONFLUENCE MEMORY BANK # 1 WITH THE MAIN-STREAM MEMORY<
______
 ** MAIN STREAM CONFLUENCE DATA **
 STREAM RUNOFF TC INTENSITY AREA
                 (MIN.) (INCH/HOUR) (ACRE)
          (CFS)
 NUMBER
 ** MEMORY BANK # 1 CONFLUENCE DATA **
 STREAM RUNOFF TC INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE)
 1 83.38 9.28 4.155 26.87

LONGEST FLOWPATH FROM NODE 110.00 TO NODE 138.00 =
                                                2449.00 FEET.
 ** PEAK FLOW RATE TABLE **
 STREAM RUNOFF TC INTENSITY
NUMBER (CFS) (MIN.) (INCH/HOUR)
                 8.06
9.28
         106.36
                        4.551
    1
         114.38
                             4.155
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 114.38 Tc(MIN.) =
 TOTAL AREA(ACRES) =
                     37.5
*******************
 FLOW PROCESS FROM NODE 138.00 TO NODE 138.00 IS CODE = 12
 >>>>CLEAR MEMORY BANK # 1 <<<<<
______
FLOW PROCESS FROM NODE 138.00 TO NODE 162.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <---
______
```

```
ELEVATION DATA: UPSTREAM(FEET) = 411.00 DOWNSTREAM(FEET) = 362.00
 FLOW LENGTH(FEET) = 987.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 36.0 INCH PIPE IS 24.6 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 22.21
ESTIMATED PIPE DIAMETER(INCH) = 36.00
                                     NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 114.38
 PIPE TRAVEL TIME(MIN.) =
                        0.74
                              Tc(MIN.) =
                                           10.02
 LONGEST FLOWPATH FROM NODE 110.00 TO NODE 162.00 = 3436.00 FEET.
*************************
 FLOW PROCESS FROM NODE 162.00 TO NODE 162.00 IS CODE = 1
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 10.02
 RAINFALL INTENSITY(INCH/HR) = 3.95
TOTAL STREAM AREA(ACRES) = 37.51
                             3.95
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                   114.38
************************
 FLOW PROCESS FROM NODE 160.00 TO NODE 161.00 IS CODE = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
 *USER SPECIFIED(SUBAREA):
 PAVED SURFACE RUNOFF COEFFICIENT = .8500
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 100.00
 UPSTREAM ELEVATION(FEET) = 419.00
 DOWNSTREAM ELEVATION(FEET) = 415.50
ELEVATION DIFFERENCE(FEET) = 3.50
 URBAN SUBAREA OVERLAND TIME OF FLOW(MIN.) =
 WARNING: INITIAL SUBAREA FLOW PATH LENGTH IS GREATER THAN
         THE MAXIMUM OVERLAND FLOW LENGTH = 82.50
         (Reference: Table 3-1B of Hydrology Manual)
         THE MAXIMUM OVERLAND FLOW LENGTH IS USED IN To CALCULATION!
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.192
 NOTE: RAINFALL INTENSITY IS BASED ON TC = 5-MINUTE.
 SUBAREA RUNOFF(CFS) = 1.21
TOTAL AREA(ACRES) = 0.23 TOTAL RUNOFF(CFS) =
*************************
 FLOW PROCESS FROM NODE 161.00 TO NODE 162.00 IS CODE = 61
______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STANDARD CURB SECTION USED) <>>>
------
 UPSTREAM ELEVATION(FEET) = 415.50 DOWNSTREAM ELEVATION(FEET) = 367.00
 STREET LENGTH(FEET) = 928.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 44.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 22.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL (DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) =
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   STREETFLOW MODEL RESULTS HISING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.33
   HALFSTREET FLOOD WIDTH(FEET) = 10.27
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 5.17
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.71
 STREET FLOW TRAVEL TIME(MIN.) = 2.99 Tc(MIN.) =
                                                5.68
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.700
  *USER SPECIFIED(SUBAREA):
 PAVED SURFACE RUNOFF COEFFICIENT = .7200
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.725
 SUBAREA AREA(ACRES) = 5.23 SUBAREA RUNOFF(CFS) = 21.46
TOTAL AREA(ACRES) = 5.5 PEAK FLOW RATE(CFS) =
 TOTAL AREA(ACRES) =
                        5.5
                                PEAK FLOW RATE(CFS) = 22.58
 END OF SUBAREA STREET FLOW HYDRAULICS:
```

```
DEPTH(FEET) = 0.39 HALFSTREET FLOOD WIDTH(FEET) = 13.23
 FLOW VELOCITY(FEET/SEC.) = 6.04 DEPTH*VELOCITY(FT*FT/SEC.) = 2.36
 LONGEST FLOWPATH FROM NODE 160.00 TO NODE 162.00 = 1028.00 FEET.
********************
 FLOW PROCESS FROM NODE 162.00 TO NODE 162.00 IS CODE = 1
 >>>>DESTGNATE INDEPENDENT STREAM FOR CONFIJIENCE<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 5.68
 RAINFALL INTENSITY(INCH/HR) = 5.70
 TOTAL STREAM AREA(ACRES) = 5.46
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                 22.58
 ** CONFLUENCE DATA **
 STREAM RUNOFF TC INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR)
                        3.955
                 10.02
          114.38
    1
    2
          22.58 5.68
                            5.700
                                        5.46
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
        RUNOFF
 STREAM
                   Tc
                          INTENSITY
 NUMBER
          (CFS)
                 (MIN.) (INCH/HOUR)
         87.47 5.68 5.700
130.04 10.02 3.955
    1
    2.
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 130.04 Tc(MIN.) = 10.02
TOTAL AREA(ACRES) = 43.0
 LONGEST FLOWPATH FROM NODE 110.00 TO NODE 162.00 =
                                                3436 00 FEET.
 FLOW PROCESS FROM NODE 162.00 TO NODE 162.00 IS CODE = 10
 >>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 1 <<<<
______
*******************
 FLOW PROCESS FROM NODE 170.00 TO NODE 171.00 IS CODE = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
 *USER SPECIFIED(SUBAREA):
 DENSE RESIDENTIAL (R2,R3) RUNOFF COEFFICIENT = .7500
 INITIAL SUBAREA FLOW-LENGTH(FEET) =
                                 65.00
 UPSTREAM ELEVATION(FEET) = 556.05
 DOWNSTREAM ELEVATION(FEET) = 555.40
 ELEVATION DIFFERENCE(FEET) =
                            0.65
 URBAN SUBAREA OVERLAND TIME OF FLOW(MIN.) = 5.079
 WARNING: INITIAL SUBAREA FLOW PATH LENGTH IS GREATER THAN
        THE MAXIMUM OVERLAND FLOW LENGTH = 65.00
        (Reference: Table 3-1B of Hydrology Manual)
        THE MAXIMUM OVERLAND FLOW LENGTH IS USED IN To CALCULATION!
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.129
 SUBAREA RUNOFF(CFS) =
                      0.83
                    0.18 TOTAL RUNOFF(CFS) =
 TOTAL AREA(ACRES) =
                                              0.83
 FLOW PROCESS FROM NODE 171.00 TO NODE 172.00 IS CODE = 61
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA <>>>
 >>>>(STANDARD CURB SECTION USED) <<<<
------
 UPSTREAM ELEVATION(FEET) = 555.40 DOWNSTREAM ELEVATION(FEET) = 529.00
 STREET LENGTH(FEET) = 620.00
                           CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 16.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 8.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
```

```
SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL (DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.30
  HALFSTREET FLOOD WIDTH(FEET) =
  AVERAGE FLOW VELOCITY(FEET/SEC.) = 4.36
  PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.32
 STREET FLOW TRAVEL TIME(MIN.) = 2.37 Tc(MIN.) =
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.787
 *USER SPECIFIED(SUBAREA):
 DENSE RESIDENTIAL (R2,R3) RUNOFF COEFFICIENT = .7500
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.750
 SUBAREA AREA(ACRES) = 3.82
                             SUBAREA RUNOFF(CFS) = 13.72
 TOTAL AREA(ACRES) =
                               PEAK FLOW RATE(CFS) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.36 HALFSTREET FLOOD WIDTH(FEET) = 11.47
 FLOW VELOCITY(FEET/SEC.) = 5.01 DEPTH*VELOCITY(FT*FT/SEC.) = 1.78
 LONGEST FLOWPATH FROM NODE 170.00 TO NODE 172.00 = 685.00 FEET.
******************
 FLOW PROCESS FROM NODE 172.00 TO NODE 177.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) < < < <
______
 ELEVATION DATA: UPSTREAM(FEET) = 524.00 DOWNSTREAM(FEET) = 479.00
 FLOW LENGTH(FEET) = 483.00 MANNING'S N = 0.013
 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 8.7 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 16.96
 ESTIMATED PIPE DIAMETER(INCH) = 18.00
                                  NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 14.36
 PIPE TRAVEL TIME(MIN.) = 0.47 Tc(MIN.) =
 LONGEST FLOWPATH FROM NODE 170.00 TO NODE 177.00 = 1168.00 FEET.
************************
 FLOW PROCESS FROM NODE 177.00 TO NODE 177.00 IS CODE = 1
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLIENCE<
______
 TOTAL NUMBER OF STREAMS = 3
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 7.92
 RAINFALL INTENSITY(INCH/HR) = 4.60
TOTAL STREAM AREA(ACRES) = 4.00
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                 14.36
 FLOW PROCESS FROM NODE 175.00 TO NODE 176.00 IS CODE = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
 *USER SPECIFIED(SUBAREA):
 DENSE RESIDENTIAL (R2,R3) RUNOFF COEFFICIENT = .7500
 INITIAL SUBAREA FLOW-LENGTH(FEET) =
                                65.00
 UPSTREAM ELEVATION(FEET) = 529.95
 DOWNSTREAM ELEVATION(FEET) = 529.30
ELEVATION DIFFERENCE(FEET) = 0.65
 URBAN SUBAREA OVERLAND TIME OF FLOW(MIN.) = 5.079
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.129
 SUBAREA RUNOFF(CFS) = 0.74
                    0.16 TOTAL RUNOFF(CFS) =
 TOTAL AREA(ACRES) =
                                               0.74
************************
 FLOW PROCESS FROM NODE 176.00 TO NODE 177.00 IS CODE = 61
______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STANDARD CURB SECTION USED) <>>>
_____
 UPSTREAM ELEVATION(FEET) = 529.30 DOWNSTREAM ELEVATION(FEET) = 484.00
```

```
STREET LENGTH(FEET) = 424.70 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 16.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 8.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.25
   HALFSTREET FLOOD WIDTH(FEET) =
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 5.83
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.45
 STREET FLOW TRAVEL TIME(MIN.) = 1.21 Tc(MIN.) =
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.337
 *USER SPECIFIED(SUBAREA):
 DENSE RESIDENTIAL (R2,R3) RUNOFF COEFFICIENT = .7500
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.750
 SUBAREA AREA(ACRES) = 2.51 SUBAREA RUNOFF(CFS) = 10.05
                              PEAK FLOW RATE(CFS) = 10.69
 TOTAL AREA(ACRES) =
                      2.7
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.29 HALFSTREET FLOOD WIDTH(FEET) = 8.28
 FLOW VELOCITY(FEET/SEC.) = 6.65 DEPTH*VELOCITY(FT*FT/SEC.) =
 LONGEST FLOWPATH FROM NODE 175.00 TO NODE 177.00 = 489.70 FEET.
***********************
 FLOW PROCESS FROM NODE 177.00 TO NODE 177.00 IS CODE = 1
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <--
______
 TOTAL NUMBER OF STREAMS = 3
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 6.29
 RAINFALL INTENSITY(INCH/HR) =
                            5.34
 TOTAL STREAM AREA(ACRES) = 2.67
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                  10.69
*******************
 FLOW PROCESS FROM NODE 180.00 TO NODE 181.00 IS CODE = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
 *USER SPECIFIED(SUBAREA):
 VEGETATED SLOPES (STEEP) RUNOFF COEFFICIENT = .6000
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 100.00
 UPSTREAM ELEVATION(FEET) = 643.00
 DOWNSTREAM ELEVATION(FEET) = 633.00
ELEVATION DIFFERENCE(FEET) = 10.00
 URBAN SUBAREA OVERLAND TIME OF FLOW(MIN.) =
                                       4.178
 WARNING: THE MAXIMUM OVERLAND FLOW SLOPE, 10.%, IS USED IN To CALCULATION!
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.192
 NOTE: RAINFALL INTENSITY IS BASED ON To = 5-MINUTE.
 SUBAREA RUNOFF(CFS) =
                       0.26
 TOTAL AREA(ACRES) =
                     0.07 TOTAL RUNOFF(CFS) =
***********************
 FLOW PROCESS FROM NODE 181.00 TO NODE 182.00 IS CODE = 53
______
 >>>>COMPUTE NATURAL MOUNTAIN CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA
______
 ELEVATION DATA: UPSTREAM(FEET) = 633.00 DOWNSTREAM(FEET) = 500.00
 CHANNEL LENGTH THRU SUBAREA(FEET) = 857.00 CHANNEL SLOPE = 0.1552
 NOTE: CHANNEL FLOW OF 1. CFS WAS ASSUMED IN VELOCITY ESTIMATION
 CHANNEL FLOW THRU SUBAREA(CFS) =
                                0.26
 FLOW VELOCITY(FEET/SEC) = 2.21 (PER LACFCD/RCFC&WCD HYDROLOGY MANUAL)
TRAVEL TIME(MIN.) = 6.47 Tc(MIN.) = 10.65
LONGEST FLOWPATH FROM NODE 180.00 TO NODE 182.00 = 957.00 FEET
                                                    957.00 FEET.
```

```
FLOW PROCESS FROM NODE
                     >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
                                            ------
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.801
 *USER SPECIFIED(SUBAREA):
 VEGETATED SLOPES (STEEP) RUNOFF COEFFICIENT = .6000
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.6000
 SUBAREA AREA(ACRES) = 3.50 SUBAREA RUNOFF(CFS) = TOTAL AREA(ACRES) = 3.6 TOTAL RUNOFF(CFS) =
                                                 7.98
 TC(MIN.) = 10.65
********************
 FLOW PROCESS FROM NODE 183.00 TO NODE 182.00 IS CODE = 81
 ______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.801
 *USER SPECIFIED(SUBAREA):
 VEGETATED SLOPES (STEEP) RUNOFF COEFFICIENT = .6000
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.6000
 SUBAREA AREA(ACRES) = 1.00 SUBAREA RUNOFF(CFS) = TOTAL AREA(ACRES) = 4.6 TOTAL RUNOFF(CFS) =
                                                 2.28
 TC(MIN.) = 10.65
*********************
 FLOW PROCESS FROM NODE 182.00 TO NODE 177.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) < < < <
_____
 ELEVATION DATA: UPSTREAM(FEET) = 495.00 DOWNSTREAM(FEET) = 479.00
 FLOW LENGTH(FEET) = 160.00 MANNING'S N = 0.013
 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 7.1 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 16.01
 ESTIMATED PIPE DIAMETER(INCH) = 18.00
                                    NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 10.42
 PIPE TRAVEL TIME(MIN.) = 0.17
                               Tc(MIN.) = 10.82
 LONGEST FLOWPATH FROM NODE 180.00 TO NODE 177.00 =
                                                   1117.00 FEET.
************************
 FLOW PROCESS FROM NODE 177.00 TO NODE 177.00 IS CODE = 1
 >>>>DESTGNATE INDEPENDENT STREAM FOR CONFLIENCE<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES <>>>
______
 TOTAL NUMBER OF STREAMS = 3
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE:
 TIME OF CONCENTRATION(MIN.) = 10.82
RAINFALL INTENSITY(INCH/HR) = 3.76
TOTAL STREAM AREA(ACRES) = 4.57
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                   10.42
 ** CONFLUENCE DATA **
 STREAM RUNOFF
NUMBER (CFS)
                   Tc
                            INTENSITY
                   (MIN.) (INCH/HOUR) (ACRE)

    14.36
    7.92
    4.600

    10.69
    6.29
    5.337

    10.42
    10.82
    3.764

    1
                                           4.00
     2
                                            2.67
     3
                                           4.57
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 3 STREAMS.
 ** PEAK FLOW RATE TABLE **
 STREAM RUNOFF TC INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR)
                          5.337
           28.16 6.29
    1
     2
           31.21
                    7.92
                             4.600
           29.71 10.82
                            3.764
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 31.21 Tc(MIN.) = TOTAL AREA(ACRES) = 11.2
                                          7.92
 LONGEST FLOWPATH FROM NODE 170.00 TO NODE 177.00 = 1168.00 FEET.
```

```
FLOW PROCESS FROM NODE 177.00 TO NODE 187.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FIOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <>>>
______
 ELEVATION DATA: UPSTREAM(FEET) = 479.00 DOWNSTREAM(FEET) = 425.00
 FLOW LENGTH(FEET) = 570.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 21.0 INCH PIPE IS 12.6 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 20.65
 ESTIMATED PIPE DIAMETER(INCH) = 21.00
                                   NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 31.21
 PIPE TRAVEL TIME(MIN.) = 0.46 Tc(MIN.) =
                                        8.38
 LONGEST FLOWPATH FROM NODE 170.00 TO NODE 187.00 = 1738.00 FEET.
***********************
 FLOW PROCESS FROM NODE 187.00 TO NODE 187.00 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <---
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 8.38
 RAINFALL INTENSITY(INCH/HR) = 4.44
 TOTAL STREAM AREA(ACRES) = 11.24
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                 31.21
************************
 FLOW PROCESS FROM NODE 185.00 TO NODE 186.00 IS CODE = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
 *USER SPECIFIED(SUBAREA):
 DENSE RESIDENTIAL (R2,R3) RUNOFF COEFFICIENT = .7500
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 65.00
 UPSTREAM ELEVATION(FEET) = 485.25

DOWNSTREAM ELEVATION(FEET) = 484.60

ELEVATION DIFFERENCE(FEET) = 0.65
 URBAN SUBAREA OVERLAND TIME OF FLOW(MIN.) =
 WARNING: INITIAL SUBAREA FLOW PATH LENGTH IS GREATER THAN
        THE MAXIMUM OVERLAND FLOW LENGTH = 65.00
        (Reference: Table 3-1B of Hydrology Manual)
        THE MAXIMUM OVERLAND FLOW LENGTH IS USED IN To CALCULATION!
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.129
 SUBAREA RUNOFF(CFS) =
                     0.87
 TOTAL AREA(ACRES) =
                    0.19 TOTAL RUNOFF(CFS) =
                                              0.87
*************************
 FLOW PROCESS FROM NODE 186.00 TO NODE 187.00 IS CODE = 61
______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STANDARD CURB SECTION USED) < < < <
______
 UPSTREAM ELEVATION(FEET) = 484.60 DOWNSTREAM ELEVATION(FEET) = 430.00
 STREET LENGTH(FEET) = 524.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 16.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 8.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL (DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                5.78
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.25
   HALFSTREET FLOOD WIDTH(FEET) =
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 5.82
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.45
 STREET FLOW TRAVEL TIME(MIN.) = 1.50 Tc(MIN.) =
                                             6.58
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.187
 *USER SPECIFIED(SUBAREA):
 DENSE RESIDENTIAL (R2,R3) RUNOFF COEFFICIENT = .7500
```

```
AREA-AVERAGE RUNOFF COEFFICIENT = 0.750
 SUBAREA AREA(ACRES) = 2.51 SUBAREA RUNOFF(CFS) =
                                             9.76
                           PEAK FLOW RATE(CFS) =
 TOTAL AREA(ACRES) =
                    2.7
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.29 HALFSTREET FLOOD WIDTH(FEET) = 8.28
 FLOW VELOCITY(FEET/SEC.) = 6.53 DEPTH*VELOCITY(FT*FT/SEC.) = 1.91
 LONGEST FLOWPATH FROM NODE 185.00 TO NODE 187.00 =
                                              589 00 FEET.
*************************
 FLOW PROCESS FROM NODE 187.00 TO NODE 187.00 IS CODE = 1
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES
TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 6.58
 RAINFALL INTENSITY(INCH/HR) =
                        5.19
 TOTAL STREAM AREA(ACRES) = 2.70
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                              10.50
 ** CONFLUENCE DATA **
 STREAM RUNOFF
                 Tc
                        INTENSITY
                (MIN.) (INCH/HOUR)
 NUMBER
          (CFS)
                                   (ACRE)
                                  11.24
          31.21
                 8.38 4.436
   1
         10.50 6.58
    2
                          5.187
                                      2.70
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
 STREAM
       RUNOFF
                  Tc
                        INTENSITY
 NUMBER
         (CFS)
                 (MIN.) (INCH/HOUR)
         37.19 6.58 5.187
40.19 8.38 4.436
    1
    2
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 40.19 Tc(MIN.) = TOTAL AREA(ACRES) = 13.9
                                     8.38
                    13.9
 LONGEST FLOWPATH FROM NODE 170.00 TO NODE 187.00 = 1738.00 FEET.
*************************
 FLOW PROCESS FROM NODE 187.00 TO NODE 192.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <>>>
______
 ELEVATION DATA: UPSTREAM(FEET) = 425.00 DOWNSTREAM(FEET) = 418.00
 FLOW LENGTH(FEET) = 575.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 30.0 INCH PIPE IS 23.0 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 9.94
 ESTIMATED PIPE DIAMETER(INCH) = 30.00
                                 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 40.19
 PIPE TRAVEL TIME(MIN.) = 0.96
                          Tc(MIN.) =
                                     9.35
                                    192.00 =
 LONGEST FLOWPATH FROM NODE 170.00 TO NODE
                                             2313.00 FEET.
 FLOW PROCESS FROM NODE 192.00 TO NODE 192.00 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <>>>
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 9.35
RAINFALL INTENSITY(INCH/HR) = 4.14
 TOTAL STREAM AREA(ACRES) = 13.94
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                               40.19
**************************
 FLOW PROCESS FROM NODE 190.00 TO NODE 191.00 IS CODE = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS
______
 *USER SPECIFIED(SUBAREA):
 DENSE RESIDENTIAL (R2,R3) RUNOFF COEFFICIENT = .7500
```

```
INITIAL SUBAREA FLOW-LENGTH(FEET) =
 UPSTREAM ELEVATION(FEET) = 434.55
 ELEVATION DIFFERENCE (FEET) = 433.90

URBAN CHARRA
 URBAN SUBAREA OVERLAND TIME OF FLOW(MIN.) =
 WARNING: INITIAL SUBAREA FLOW PATH LENGTH IS GREATER THAN
         THE MAXIMUM OVERLAND FLOW LENGTH = 65.00
         (Reference: Table 3-1B of Hydrology Manual)
         THE MAXIMUM OVERLAND FLOW LENGTH IS USED IN To CALCULATION!
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.129
 SUBAREA RUNOFF(CFS) = 0.37
 TOTAL AREA(ACRES) =
                      0.08 TOTAL RUNOFF(CFS) =
************************
 FLOW PROCESS FROM NODE 191.00 TO NODE 192.00 IS CODE = 61
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STANDARD CURB SECTION USED) << < <
_____
 UPSTREAM ELEVATION(FEET) = 433.90 DOWNSTREAM ELEVATION(FEET) = 423.00
 STREET LENGTH(FEET) = 681.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 16.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 8.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.35
   HALFSTREET FLOOD WIDTH(FEET) =
                               10.97
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.97
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.03
 STREET FLOW TRAVEL TIME(MIN.) = 3.82 Tc(MIN.) =
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.268
  *USER SPECIFIED(SUBAREA):
 DENSE RESIDENTIAL (R2,R3) RUNOFF COEFFICIENT = .7500
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.750
 SUBAREA AREA(ACRES) = 4.57 SUBAREA RUNOFF(CFS) = 14.63
 TOTAL AREA(ACRES) =
                        4.7
                                PEAK FLOW RATE(CFS) =
                                                          14.88
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.41 HALFSTREET FLOOD WIDTH(FEET) = 14.22
 FLOW VELOCITY(FEET/SEC.) = 3.48 DEPTH*VELOCITY(FT*FT/SEC.) =
 LONGEST FLOWPATH FROM NODE 190.00 TO NODE 192.00 = 746.00 FEET.
************************
 FLOW PROCESS FROM NODE 192.00 TO NODE 192.00 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <>>>
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES << < <
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 8.90
RAINFALL INTENSITY(INCH/HR) = 4.27
 RAINFALL INTENSITY(INCH/HR) =
 TOTAL STREAM AREA(ACRES) = 4.65
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                    14.88
 ** CONFLUENCE DATA **
 STREAM RUNOFF TC INTENSITY
NUMBER (CFS) (MIN.) (INCH/HOUR)
                    9.35
                             4.135
                                          13.94
           40.19
    1
     2
           14.88
                    8.90
                               4.268
                                            4.65
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
 STREAM RUNOFF Tc
                           INTENSITY
           (CFS) (MIN.) (INCH/HOUR)
 NUMBER
```

```
53.83 8.90 4.268
            54.61
                     9.35
                               4.135
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 54.61 Tc(MIN.) = TOTAL AREA(ACRES) = 18.6
                                            9.35
 LONGEST FLOWPATH FROM NODE 170.00 TO NODE
                                             192.00 =
************************
 FLOW PROCESS FROM NODE 192.00 TO NODE 162.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << <<
______
 ELEVATION DATA: UPSTREAM(FEET) = 418.00 DOWNSTREAM(FEET) = 362.00
 FLOW LENGTH(FEET) = 539.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 24.0 INCH PIPE IS 16.1 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 24.40
 ESTIMATED PIPE DIAMETER(INCH) = 24.00
                                       NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 54.61
 PIPE TRAVEL TIME(MIN.) = 0.37 Tc(MIN.) =
                                            9.72
 LONGEST FLOWPATH FROM NODE 170.00 TO NODE 162.00 =
                                                       2852.00 FEET.
*******************
 FLOW PROCESS FROM NODE 162.00 TO NODE 162.00 IS CODE = 11
 >>>>CONFLUENCE MEMORY BANK # 1 WITH THE MAIN-STREAM MEMORY<
______
 ** MAIN STREAM CONFLUENCE DATA **

        STREAM
        RUNOFF
        Tc
        INTENSITY
        AREA

        NUMBER
        (CFS)
        (MIN.)
        (INCH/HOUR)
        (ACRE)

        1
        54.61
        9.72
        4.034
        18.59

 1 54.61 9.72 4.034 18.59
LONGEST FLOWPATH FROM NODE 170.00 TO NODE 162.00 =
                                                      2852.00 FEET.
 ** MEMORY BANK # 1 CONFLUENCE DATA **

        STREAM
        RUNOFF
        Tc
        INTENSITY
        AREA

        NUMBER
        (CFS)
        (MIN.)
        (INCH/HOUR)
        (ACRE)

        1
        130.04
        10.02
        3.955
        42.97

                                         42.97
 LONGEST FLOWPATH FROM NODE 110.00 TO NODE 162.00 = 3436.00 FEET.
 ** PEAK FLOW RATE TABLE **
 STREAM RUNOFF TC NUMBER (CFS) (MIN.
                             INTENSITY
                    (MIN.) (INCH/HOUR)
    1

    180.73
    9.72
    4.034

    183.59
    10.02
    3.955

         183.59
     2
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 183.59 Tc(MIN.) = 10.02
 TOTAL AREA(ACRES) =
                        61.6
***********************
 FLOW PROCESS FROM NODE 162.00 TO NODE 162.00 IS CODE = 12
                       _____
 >>>>CLEAR MEMORY BANK # 1 <<<<
______
FLOW PROCESS FROM NODE 162.00 TO NODE 197.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <>>>
______
 ELEVATION DATA: UPSTREAM(FEET) = 362.00 DOWNSTREAM(FEET) = 315.00
 FLOW LENGTH(FEET) = 915.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 42.0 INCH PIPE IS 29.7 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 25.23
 ESTIMATED PIPE DIAMETER(INCH) = 42.00
                                       NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 183.59
 PIPE TRAVEL TIME(MIN.) = 0.60
                               Tc(MIN.) = 10.62
 LONGEST FLOWPATH FROM NODE 110.00 TO NODE
                                            197.00 =
                                                      4351.00 FEET.
***********************
 FLOW PROCESS FROM NODE 197.00 TO NODE 197.00 IS CODE = 1
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <>>>
```

```
TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 10.62
RAINFALL INTENSITY(INCH/HR) = 3.81
 TOTAL STREAM AREA(ACRES) = 61.56
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                   183.59
************************
 FLOW PROCESS FROM NODE 195.00 TO NODE 196.00 IS CODE = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
 *USER SPECIFIED(SUBAREA):
 PAVED SURFACE RUNOFF COEFFICIENT = .7300
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 100.00
 UPSTREAM ELEVATION(FEET) = 370.00
 DOWNSTREAM ELEVATION(FEET) = 360.00
ELEVATION DIFFERENCE(FEET) = 10.00
                             10.00
 URBAN SUBAREA OVERLAND TIME OF FLOW(MIN.) =
                                        3.092
 WARNING: THE MAXIMUM OVERLAND FLOW SLOPE, 10.%, IS USED IN To CALCULATION!
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.192
 NOTE: RAINFALL INTENSITY IS BASED ON To = 5-MINUTE.
 SUBAREA RUNOFF(CFS) =
                        1.67
 TOTAL AREA(ACRES) =
                      0.37 TOTAL RUNOFF(CFS) =
*******************
 FLOW PROCESS FROM NODE 196.00 TO NODE 197.00 IS CODE = 61
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STANDARD CURB SECTION USED) <<<<
______
 UPSTREAM ELEVATION(FEET) = 360.60 DOWNSTREAM ELEVATION(FEET) = 318.50
 STREET LENGTH(FEET) = 805.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 44.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 22.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) =
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.33
   HALFSTREET FLOOD WIDTH(FEET) = 10.11
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 5.17
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.70
 STREET FLOW TRAVEL TIME(MIN.) = 2.59 Tc(MIN.) =
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.699
  *IISER SPECIFIED(SUBAREA):
 PAVED SURFACE RUNOFF COEFFICIENT = .7200
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.721
 SUBAREA AREA(ACRES) = 4.90 SUBAREA RUNOFF(CFS) = 20.11
 TOTAL AREA(ACRES) =
                       5.3
                                PEAK FLOW RATE(CFS) =
                                                         21.64
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.39 HALFSTREET FLOOD WIDTH(FEET) = 12.99
 FLOW VELOCITY(FEET/SEC.) = 5.99 DEPTH*VELOCITY(FT*FT/SEC.) = 2.31
 LONGEST FLOWPATH FROM NODE 195.00 TO NODE
                                         197.00 =
                                                      905.00 FEET.
*******************
 FLOW PROCESS FROM NODE 197.00 TO NODE 197.00 IS CODE = 1
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES
TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 5.69
 RAINFALL INTENSITY(INCH/HR) = 5.70
TOTAL STREAM AREA(ACRES) = 5.27
                            5.70
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
```

```
** CONFLUENCE DATA **
 AREA
                                      (ACRE)
                            3.808
                                        61.56
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
 STREAM RUNOFF TC
                          INTENSITY
                  (MIN.) (INCH/HOUR)
 NUMBER
          (CFS)
         119.90 5.69 5.699
198.05 10.62 3.808
    1
    2
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 198.05 Tc(MIN.) = TOTAL AREA(ACRES) = 66.8
                                       10.62
 LONGEST FLOWPATH FROM NODE 110.00 TO NODE
                                      197.00 =
                                                4351.00 FEET.
 FLOW PROCESS FROM NODE 197.00 TO NODE 198.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << <<
______
 ELEVATION DATA: UPSTREAM(FEET) = 313.00 DOWNSTREAM(FEET) = 283.50
 FLOW LENGTH(FEET) = 858.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 45.0 INCH PIPE IS 34.4 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 21.88
 ESTIMATED PIPE DIAMETER(INCH) = 45.00
                                  NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 198.05
 PIPE TRAVEL TIME(MIN.) = 0.65 Tc(MIN.) = 11.28
 LONGEST FLOWPATH FROM NODE 110.00 TO NODE 198.00 =
                                                5209.00 FEET.
***********************
 FLOW PROCESS FROM NODE 197.00 TO NODE 198.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.664
 *USER SPECIFIED(SUBAREA):
 VEGETATED SLOPES (HILLY) RUNOFF COEFFICIENT = .5000
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.7261
 SUBAREA AREA(ACRES) = 2.15 SUBAREA RUNOFF(CFS) = TOTAL AREA(ACRES) = 69.0 TOTAL RUNOFF(CFS) =
                                               3.94
 TC(MIN.) = 11.28
 NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE
 FLOW PROCESS FROM NODE 198.00 TO NODE 198.00 IS CODE = 7
 >>>>IISER SPECIFIED HYDROLOGY INFORMATION AT NODE<
______
 USER-SPECIFIED VALUES ARE AS FOLLOWS:
 TC(MIN) = 22.24 RAIN INTENSITY(INCH/HOUR) = 2.36
                  68.98 TOTAL RUNOFF(CFS) =
 TOTAL AREA(ACRES) =
************************
 FLOW PROCESS FROM NODE 198.00 TO NODE 304.00 IS CODE = 31
 >>>>COMPILTE PIPE-FIOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << < <
______
 ELEVATION DATA: UPSTREAM(FEET) = 278.00 DOWNSTREAM(FEET) = 200.00
 FLOW LENGTH(FEET) = 1006.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 30.0 INCH PIPE IS 22.5 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 25.02
 ESTIMATED PIPE DIAMETER(INCH) = 30.00
                                  NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) =
                  98.81
 PIPE TRAVEL TIME(MIN.) = 0.67
                           Tc(MIN.) = 22.91
 LONGEST FLOWPATH FROM NODE
                        110.00 TO NODE 304.00 =
                                                6215.00 FEET.
*******************
```

FLOW PROCESS FROM NODE 304.00 TO NODE 304.00 IS CODE = 1

```
>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <>
______
 TOTAL NUMBER OF STREAMS = 3
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 22.91
RAINFALL INTENSITY(INCH/HR) = 2.32
 TOTAL STREAM AREA(ACRES) = 68.98
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                               98.81
************************
 FLOW PROCESS FROM NODE 300.00 TO NODE 301.00 IS CODE = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
 *USER SPECIFIED(SUBAREA):
 VEGETATED SLOPES (STEEP) RUNOFF COEFFICIENT = .6000
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 100.00
 UPSTREAM ELEVATION(FEET) = 655.00
                        645.00
10.00
 DOWNSTREAM ELEVATION(FEET) =
 ELEVATION DIFFERENCE(FEET) =
 URBAN SUBAREA OVERLAND TIME OF FLOW(MIN.) =
                                    4.178
 WARNING: THE MAXIMUM OVERLAND FLOW SLOPE, 10.%, IS USED IN To CALCULATION!
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.192
 NOTE: RAINFALL INTENSITY IS BASED ON To = 5-MINUTE.
 SUBAREA RUNOFF(CFS) =
                     1.23
                    0.33 TOTAL RUNOFF(CFS) =
 TOTAL AREA(ACRES) =
                                             1.23
************************
 FLOW PROCESS FROM NODE 301.00 TO NODE 302.00 IS CODE = 53
 >>>>COMPUTE NATURAL MOUNTAIN CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA<
-----
 ELEVATION DATA: UPSTREAM(FEET) = 645.00 DOWNSTREAM(FEET) = 450.00
 CHANNEL LENGTH THRU SUBAREA(FEET) = 1066.00 CHANNEL SLOPE = 0.1829
 CHANNEL FLOW THRU SUBAREA(CFS) =
                              1.23
 FLOW VELOCITY(FEET/SEC) = 2.56 (PER LACFCD/RCFC&WCD HYDROLOGY MANUAL)
TRAVEL TIME(MIN.) = 6.93 Tc(MIN.) = 11.11
 LONGEST FLOWPATH FROM NODE 300.00 TO NODE
                                      302.00 =
                                              1166.00 FEET.
***********************
 FLOW PROCESS FROM NODE 301.00 TO NODE 302.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.700
 *USER SPECIFIED(SUBAREA):
 VEGETATED SLOPES (STEEP) RUNOFF COEFFICIENT = .6000
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.6000
 SUBAREA AREA(ACRES) = 18.82 SUBAREA RUNOFF(CFS) = 41.78
                    19.1 TOTAL RUNOFF(CFS) =
 TOTAL AREA(ACRES) =
 TC(MIN.) = 11.11
************************
 FLOW PROCESS FROM NODE 302.00 TO NODE 303.00 IS CODE = 52
 >>>>COMPUTE NATURAL VALLEY CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA<
______
 ELEVATION DATA: UPSTREAM(FEET) = 450.00 DOWNSTREAM(FEET) =
 CHANNEL LENGTH THRU SUBAREA(FEET) = 2180.00 CHANNEL SLOPE = 0.0665
 CHANNEL FLOW THRU SUBAREA(CFS) =
                              42.51
 FLOW VELOCITY(FEET/SEC) = 9.53 (PER LACFCD/RCFC&WCD HYDROLOGY MANUAL)
TRAVEL TIME(MIN.) = 3.81 Tc(MIN.) = 14.92
                       300.00 TO NODE
 LONGEST FLOWPATH FROM NODE
                                     303.00 =
************************
 FLOW PROCESS FROM NODE 302.00 TO NODE 303.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.059
 *USER SPECIFIED(SUBAREA):
 VEGETATED SLOPES (STEEP) RUNOFF COEFFICIENT = .6000
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.6000
```

```
SUBAREA AREA(ACRES) = 34.79 SUBAREA RUNOFF(CFS) = 63.84
 TOTAL AREA(ACRES) = 53.9 TOTAL RUNOFF(CFS) =
 TC(MIN.) = 14.92
********************
 FLOW PROCESS FROM NODE
                       303.00 TO NODE 304.00 IS CODE = 53
 >>>>COMPUTE NATURAL MOUNTAIN CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA<
______
 ELEVATION DATA: UPSTREAM(FEET) = 305.00 DOWNSTREAM(FEET) = 200.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 751.00 CHANNEL SLOPE = 0.1398 CHANNEL FLOW THRU SUBAREA(CFS) = 98.99
 FLOW VELOCITY(FEET/SEC) = 9.67 (PER LACFCD/RCFC&WCD HYDROLOGY MANUAL)
TRAVEL TIME(MIN.) = 1.29 Tc(MIN.) = 16.22
LONGEST FLOWPATH FROM NODE 300.00 TO NODE 304.00 = 4097.00 FEE
************************
 FLOW PROCESS FROM NODE 303.00 TO NODE 304.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.899
 *USER SPECIFIED(SUBAREA):
 VEGETATED SLOPES (STEEP) RUNOFF COEFFICIENT = .6000
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.6000
 SUBAREA AREA(ACRES) = 4.88 SUBAREA RUNOFF(CFS) = TOTAL AREA(ACRES) = 58.8 TOTAL RUNOFF(CFS) =
 TC(MIN.) = 16.22
**************
 FLOW PROCESS FROM NODE 304.00 TO NODE 304.00 IS CODE = 1
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <---
______
 TOTAL NUMBER OF STREAMS = 3
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 16.22
RAINFALL INTENSITY(INCH/HR) = 2.90
TOTAL STREAM AREA(ACRES) = 58.82
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                    102.30
*************************
 FLOW PROCESS FROM NODE 310.00 TO NODE 311.00 IS CODE = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS
 *USER SPECIFIED(SUBAREA):
 VEGETATED SLOPES (STEEP) RUNOFF COEFFICIENT = .6000
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 100.00
 UPSTREAM ELEVATION(FEET) = 410.00

DOWNSTREAM ELEVATION(FEET) = 400.00

ELEVATION DIFFERENCE(FEET) = 10.00
 URBAN SUBAREA OVERLAND TIME OF FLOW(MIN.) = 4.178
 WARNING: THE MAXIMUM OVERLAND FLOW SLOPE, 10.%, IS USED IN To CALCULATION!
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.192
 NOTE: RAINFALL INTENSITY IS BASED ON To = 5-MINUTE.
 SUBAREA RUNOFF(CFS) = 2.38
 TOTAL AREA(ACRES) =
                       0.64
                              TOTAL RUNOFF(CFS) =
                                                      2.38
*************************
 FLOW PROCESS FROM NODE 311.00 TO NODE 312.00 IS CODE = 52
 >>>>COMPUTE NATURAL VALLEY CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA<
_____
 ELEVATION DATA: UPSTREAM(FEET) = 400.00 DOWNSTREAM(FEET) = 264.00
 CHANNEL LENGTH THRU SUBAREA(FEET) = 2121.00 CHANNEL SLOPE = 0.0641
 CHANNEL FLOW THRU SUBAREA(CFS) =
                                    2.38
 FLOW VELOCITY(FEET/SEC) = 4.52 (PER LACFCD/RCFC&WCD HYDROLOGY MANUAL)
TRAVEL TIME(MIN.) = 7.82 Tc(MIN.) = 12.00
LONGEST FLOWPATH FROM NODE 310.00 TO NODE 312.00 = 2221.00 FEE
*******************
 FLOW PROCESS FROM NODE 311.00 TO NODE 312.00 IS CODE = 81
```

```
>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<>>>
______
 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 3.521
 *USER SPECIFIED(SUBAREA):
 VEGETATED SLOPES (STEEP) RUNOFF COEFFICIENT = .6000
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.6000
 SUBAREA AREA(ACRES) = 28.42 SUBAREA RUNOFF(CFS) = TOTAL AREA(ACRES) = 29.1 TOTAL RUNOFF(CFS) =
 TOTAL AREA(ACRES) =
                                              61.39
 TC(MIN.) = 12.00
*************************
 FLOW PROCESS FROM NODE 312.00 TO NODE 313.00 IS CODE = 52
______
 >>>>COMPUTE NATURAL VALLEY CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA<
______
 ELEVATION DATA: UPSTREAM(FEET) = 264.00 DOWNSTREAM(FEET) = 224.00
 CHANNEL LENGTH THRU SUBAREA(FEET) = 1340.00 CHANNEL SLOPE = 0.0299 CHANNEL FLOW THRU SUBAREA(CFS) = 61.39
 FLOW VELOCITY(FEET/SEC) = 7.10 (PER LACFCD/RCFC&WCD HYDROLOGY MANUAL)
TRAVEL TIME(MIN.) = 3.15 Tc(MIN.) = 15.14
 LONGEST FLOWPATH FROM NODE 310.00 TO NODE
                                      313.00 =
                                                3561.00 FEET.
*******************
 FLOW PROCESS FROM NODE 312.00 TO NODE 313.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.030
 *USER SPECIFIED(SUBAREA):
 VEGETATED SLOPES (STEEP) RUNOFF COEFFICIENT = .6000
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.6000
 SUBAREA AREA(ACRES) = 27.10 SUBAREA RUNOFF(CFS) = 49.26
TOTAL AREA(ACRES) = 56.2 TOTAL RUNOFF(CFS) = 102.0
 TC(MIN.) = 15.14
***********************
 FLOW PROCESS FROM NODE 313.00 TO NODE 304.00 IS CODE = 52
 >>>>COMPUTE NATURAL VALLEY CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA<
------
 ELEVATION DATA: UPSTREAM(FEET) = 224.00 DOWNSTREAM(FEET) = 200.00
 CHANNEL LENGTH THRU SUBAREA(FEET) = 1435.00 CHANNEL SLOPE = 0.0167
CHANNEL FLOW THRU SUBAREA(CFS) = 102.08
 LONGEST FLOWPATH FROM NODE 310.00 TO NODE
                                     304.00 =
**********************
 FLOW PROCESS FROM NODE 313.00 TO NODE 304.00 IS CODE = 81
     _____
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.616
 *USER SPECIFIED(SUBAREA):
 VEGETATED SLOPES (STEEP) RUNOFF COEFFICIENT = .6000
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.6000
 SUBAREA AREA(ACRES) = 19.13 SUBAREA RUNOFF(CFS) = 30.02
TOTAL AREA(ACRES) = 75.3 TOTAL RUNOFF(CFS) = 118.3
 TC(MIN.) =
          19.02
 FLOW PROCESS FROM NODE 304.00 TO NODE 304.00 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <---
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES <
           ______
 TOTAL NUMBER OF STREAMS = 3
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE:
 TIME OF CONCENTRATION(MIN.) = 19.02
RAINFALL INTENSITY(INCH/HR) = 2.62
 TOTAL STREAM AREA(ACRES) = 75.29
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                              118.16
```

STREAM	RUNOFF	Tc	INTENSITY	AREA
NUMBER	(CFS)	(MIN.)	(INCH/HOUR)	(ACRE)
1	98.81	22.91	2.320	68.98
2	102.30	16.22	2.899	58.82
3	118.16	19.02	2.616	75.29

RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 3 STREAMS.

* *	PEAK	FLOW	RATE	TABLE	* *

STREAM	RUNOFF	Tc	INTENSITY
NUMBER	(CFS)	(MIN.)	(INCH/HOUR)
1	273.01	16.22	2.899
2	292.50	19.02	2.616
3	285.46	22.91	2.320

COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:

PEAK FLOW RATE(CFS) = 292.50 Tc(MIN.) = 19.02
TOTAL AREA(ACRES) = 203.1
LONGEST FLOWPATH FROM NODE 110.00 TO NODE 304.00 = 6215.00 FEET.

END OF STUDY SUMMARY:

TOTAL AREA(ACRES) = 203.1 PEAK FLOW RATE(CFS) = 292.50 203.1 TC(MIN.) = 19.02

END OF RATIONAL METHOD ANALYSIS

CHAPTER 4

DETENTION BASIN ANALYSIS

Basin – Stage Information Stage – Storage Stage- Discharge

Stage -Area

Depth	Area (sf)		
0	29865		
1	32381		
2	34956		
3	37590		
4	40282		
5	43034		
6	45844		
7	48715		
8	51343		

Basin #1 Discharge	avetien Table			
Discharge vs El Low orifice:	4.5 "	Top orifice:		8 "
Number:	3	Number:		0
Cg-low:	0.61	Cg-low:	0.6	51
invert elev:	0.50 ft	invert elev:	0.0	00 ft
Middle orifice:	3 "	Emergency inlet:		
number of orif:	0	Rim height:	5.25 ft	
Cg-middle:	0.61	Area	16.00 sq ft	< 4' x 4'
invert elev:	3.50 ft	Circumference	16.00 ft	

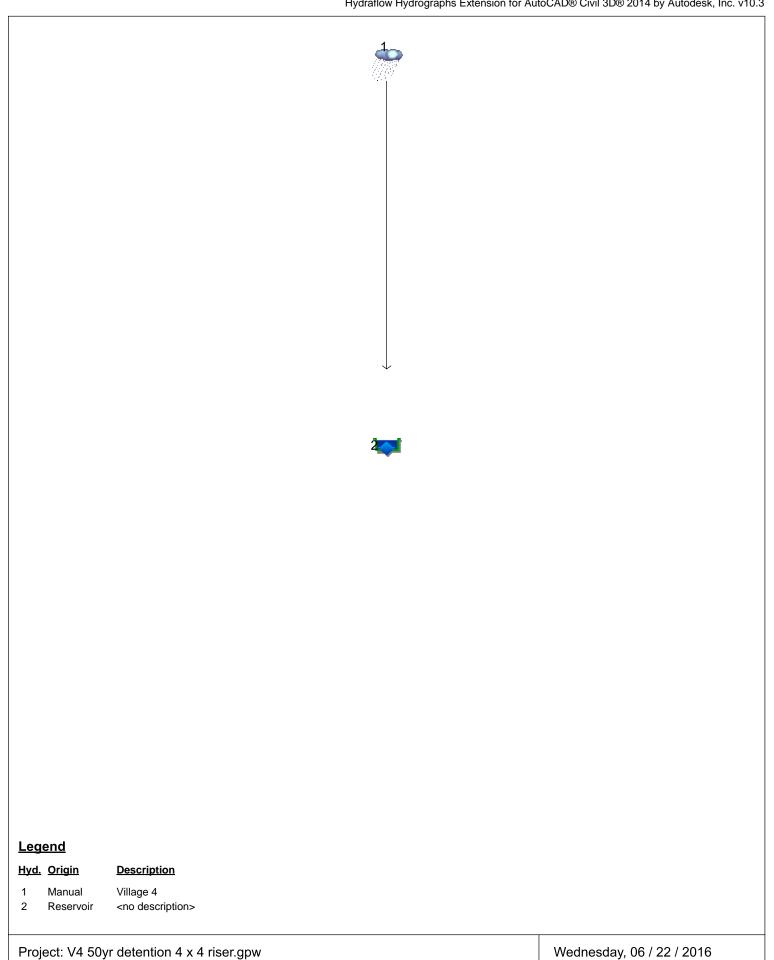
h	H/D-low	H/D-mid	H/D-top	Qlow-orif	Qlow-weir	Qtot-low	Qmid-orif	Qmid-weir	Qtot-med	Qtop-orif	Qtop-weir	Qtot-top	Qemerg	Qtot
(ft) 0.0	0.00	0.00	0.00	(cfs) 0.000	(cfs) 0.000	(cfs) 0.000	(cfs) 0.000	(cfs) 0.000	(cfs) 0.000	(cfs) 0.000	(cfs) 0.000	(cfs) 0.000	(cfs) 0.000	(cfs) 0.000
0.1	0.00	0.00	0.15	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0.2	0.00	0.00	0.30	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0.3	0.00	0.00	0.45	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0.4	0.00	0.00	0.60	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0.5	0.00 0.27	0.00	0.75 0.90	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0.6	0.27	0.00	1.05	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0.8	0.80	0.00	1.20	0.544	0.462	0.462	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.462
0.9	1.07	0.00	1.35	0.748	0.744	0.744	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.744
1.0	1.33	0.00	1.50	0.907	1.035	0.907	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.907
1.1	1.60	0.00	1.65	1.042	1.305	1.042	0.000	0.000	0.000	0.000	0.000	0.000	0.000	1.042
1.2	1.87 2.13	0.00	1.80 1.95	1.161 1.269	1.528 1.687	1.161 1.269	0.000	0.000	0.000	0.000	0.000	0.000	0.000	1.161 1.269
1.4	2.40	0.00	2.10	1.369	1.778	1.369	0.000	0.000	0.000	0.000	0.000	0.000	0.000	1.369
1.5	2.67	0.00	2.25	1.462	1.812	1.462	0.000	0.000	0.000	0.000	0.000	0.000	0.000	1.462
1.6	2.93	0.00	2.40	1.549	1.820	1.549	0.000	0.000	0.000	0.000	0.000	0.000	0.000	1.549
1.7	3.20	0.00	2.55	1.632	1.855	1.632	0.000	0.000	0.000	0.000	0.000	0.000	0.000	1.632
1.8	3.47	0.00	2.70	1.711	1.994	1.711	0.000	0.000	0.000	0.000	0.000	0.000	0.000	1.711
1.9 2.0	3.73 4.00	0.00	2.85 3.00	1.786 1.858	2.346 3.050	1.786 1.858	0.000	0.000	0.000	0.000	0.000	0.000	0.000	1.786 1.858
2.0	4.00	0.00	3.00	1.858	4.282	1.858	0.000	0.000	0.000	0.000	0.000	0.000	0.000	1.858
2.2	4.53	0.00	3.30	1.995	6.257	1.995	0.000	0.000	0.000	0.000	0.000	0.000	0.000	1.995
2.3	4.80	0.00	3.45	2.060	9.231	2.060	0.000	0.000	0.000	0.000	0.000	0.000	0.000	2.060
2.4	5.07	0.00	3.60	2.123	13.508	2.123	0.000	0.000	0.000	0.000	0.000	0.000	0.000	2.123
2.5	5.33	0.00	3.75	2.184	19.439	2.184	0.000	0.000	0.000	0.000	0.000	0.000	0.000	2.184
2.6	5.60 5.87	0.00	3.90 4.05	2.243	27.430 37.940	2.243 2.301	0.000	0.000	0.000	0.000	0.000	0.000	0.000	2.243
2.7	6.13	0.00	4.05	2.357	51.490	2.357	0.000	0.000	0.000	0.000	0.000	0.000	0.000	2.357
2.9	6.40	0.00	4.35	2.413	68.660	2.413	0.000	0.000	0.000	0.000	0.000	0.000	0.000	2.413
3.0	6.67	0.00	4.50	2.467	90.099	2.467	0.000	0.000	0.000	0.000	0.000	0.000	0.000	2.467
3.1	6.93	0.00	4.65	2.519	116.525	2.519	0.000	0.000	0.000	0.000	0.000	0.000	0.000	2.519
3.2	7.20	0.00	4.80	2.571	148.726	2.571	0.000	0.000	0.000	0.000	0.000	0.000	0.000	2.571
3.3	7.47 7.73	0.00	4.95 5.10	2.622 2.671	187.568 233.997	2.622	0.000	0.000	0.000	0.000	0.000	0.000	0.000	2.622 2.671
3.5	8.00	0.00	5.25	2.720	289.039	2.720	0.000	0.000	0.000	0.000	0.000	0.000	0.000	2.720
3.6	8.27	0.40	5.40	2.768	353.808	2.768	0.000	0.000	0.000	0.000	0.000	0.000	0.000	2.768
3.7	8.53	0.80	5.55	2.815	429.507	2.815	0.000	0.000	0.000	0.000	0.000	0.000	0.000	2.815
3.8	8.80	1.20	5.70	2.862	517.431	2.862	0.000	0.000	0.000	0.000	0.000	0.000	0.000	2.862
3.9	9.07	1.60	5.85	2.907	618.972	2.907	0.000	0.000	0.000	0.000	0.000	0.000	0.000	2.907
4.0 4.1	9.33 9.60	2.00	6.00 6.15	2.952 2.996	735.619 868.966	2.952 2.996	0.000	0.000	0.000	0.000	0.000	0.000	0.000	2.952 2.996
4.1	9.87	2.40	6.30	3.040	1020.713	3.040	0.000	0.000	0.000	0.000	0.000	0.000	0.000	3.040
4.3	10.13	3.20	6.45	3.083	1192.669	3.083	0.000	0.000	0.000	0.000	0.000	0.000	0.000	3.083
4.4	10.40	3.60	6.60	3.125	1386.754	3.125	0.000	0.000	0.000	0.000	0.000	0.000	0.000	3.125
4.5	10.67	4.00	6.75	3.167	1605.007	3.167	0.000	0.000	0.000	0.000	0.000	0.000	0.000	3.167
4.6 4.7	10.93	4.40 4.80	6.90 7.05	3.208	1849.584	3.208	0.000	0.000	0.000	0.000	0.000	0.000	0.000	3.208
4.7	11.20 11.47	4.80 5.20	7.05	3.249 3.289	2122.766 2426.957	3.249 3.289	0.000	0.000	0.000	0.000	0.000	0.000	0.000	3.249 3.289
4.9	11.73	5.60	7.25	3.329	2764.694	3.329	0.000	0.000	0.000	0.000	0.000	0.000	0.000	3.329
5.0	12.00	6.00	7.50	3.368	3138.644	3.368	0.000	0.000	0.000	0.000	0.000	0.000	0.000	3.368
5.1	12.27	6.40	7.65	3.407	3551.611	3.407	0.000	0.000	0.000	0.000	0.000	0.000	0.000	3.407
5.2	12.53	6.80	7.80	3.446	4006.540	3.446	0.000	0.000	0.000	0.000	0.000	0.000	0.000	3.446
5.3	12.80	7.20	7.95	3.483	4506.518	3.483	0.000	0.000	0.000	0.000	0.000	0.000	0.555	4.038
5.4 5.5	13.07 13.33	7.60 8.00	8.10 8.25	3.521 3.558	5054.776 5654.697	3.521 3.558	0.000	0.000	0.000	0.000	0.000	0.000	2.881 6.200	6.403 9.758
5.6	13.60	8.40	8.40	3.595	6309.817	3.595	0.000	0.000	0.000	0.000	0.000	0.000	10.270	13.865
5.7	13.87	8.80	8.55	3.631	7023.827	3.631	0.000	0.000	0.000	0.000	0.000	0.000	14.973	18.604
5.8	14.13	9.20	8.70	3.667	7800.578	3.667	0.000	0.000	0.000	0.000	0.000	0.000	20.231	23.899
5.9	14.40	9.60	8.85	3.703	8644.084	3.703	0.000	0.000	0.000	0.000	0.000	0.000	25.993	29.696
6.0	14.67	10.00	9.00	3.738	9558.525	3.738	0.000	0.000	0.000	0.000	0.000	0.000	32.216	35.955
6.1	14.93	10.40	9.15	3.774	#######	3.774	0.000	0.000	0.000	0.000	0.000	0.000	38.870	42.643

6.2	15.20	10.80	9.30	3.808	#######	3.808	0.000	0.000	0.000	0.000	0.000	0.000	45.927	49.735
6.3	15.47	11.20	9.45	3.843	#######	3.843	0.000	0.000	0.000	0.000	0.000	0.000	53.366	57.209
6.4	15.73	11.60	9.60	3.877	#######	3.877	0.000	0.000	0.000	0.000	0.000	0.000	61.169	65.045
6.5	16.00	12.00	9.75	3.910	#######	3.910	0.000	0.000	0.000	0.000	0.000	0.000	69.318	73.229
6.6	16.27	12.40	9.90	3.944	#######	3.944	0.000	0.000	0.000	0.000	0.000	0.000	77.800	81.744
6.7	16.53	12.80	10.05	3.977	#######	3.977	0.000	0.000	0.000	0.000	0.000	0.000	86.603	90.580
6.8	16.80	13.20	10.20	4.010	#######	4.010	0.000	0.000	0.000	0.000	0.000	0.000	95.715	99.725
6.9	17.07	13.60	10.35	4.043	#######	4.043	0.000	0.000	0.000	0.000	0.000	0.000	100.609	104.651
7.0	17.33	14.00	10.50	4.075	#######	4.075	0.000	0.000	0.000	0.000	0.000	0.000	103.612	107.688
7.1	17.60	14.40	10.65	4.107	#######	4.107	0.000	0.000	0.000	0.000	0.000	0.000	106.532	110.639
7.2	17.87	14.80	10.80	4.139	#######	4.139	0.000	0.000	0.000	0.000	0.000	0.000	109.373	113.512
7.3	18.13	15.20	10.95	4.171	#######	4.171	0.000	0.000	0.000	0.000	0.000	0.000	112.142	116.313
7.4	18.40	15.60	11.10	4.202	#######	4.202	0.000	0.000	0.000	0.000	0.000	0.000	114.845	119.047
7.5	18.67	16.00	11.25	4.234	#######	4.234	0.000	0.000	0.000	0.000	0.000	0.000	117.485	121.719
7.6	18.93	16.40	11.40	4.264	#######	4.264	0.000	0.000	0.000	0.000	0.000	0.000	120.068	124.332
7.7	19.20	16.80	11.55	4.295	#######	4.295	0.000	0.000	0.000	0.000	0.000	0.000	122.596	126.891
7.8	19.47	17.20	11.70	4.326	#######	4.326	0.000	0.000	0.000	0.000	0.000	0.000	125.073	129.399
7.9	19.73	17.60	11.85	4.356	#######	4.356	0.000	0.000	0.000	0.000	0.000	0.000	127.502	131.858
8.0	20.00	18.00	12.00	4.386	#######	4.386	0.000	0.000	0.000	0.000	0.000	0.000	129.885	134.271

50 YEAR DETENTION

RATIONAL METHOD HYDROGRAPH PROGRAM COPYRIGHT 1992, 2001 RICK ENGINEERING COMPANY

RUN DATE 6/22/2016
HYDROGRAPH FILE NAME Text1
TIME OF CONCENTRATION 11 MIN.
6 HOUR RAINFALL 2.13 INCHES
BASIN AREA 68.98 ACRES
RUNOFF COEFFICIENT 0.78
PEAK DISCHARGE 178.35 CFS


TIME (MIN)			DISCHARGE	(CFS) =	0
TIME (MIN)			DISCHARGE	(CFS) =	6.8
TIME (MIN)			DISCHARGE	(CFS) =	7
TIME (MIN)	= 3	3	DISCHARGE	(CFS) =	7.3
TIME (MIN)	= 4	4	DISCHARGE	(CFS) =	7.4
TIME (MIN)	= 5	5	DISCHARGE	(CFS) =	7.8
TIME (MIN)	= 6	6	DISCHARGE	(CFS) =	8
TIME (MIN)	= 7	7	DISCHARGE	(CFS) =	8.4
TIME (MIN)	= 8	8	DISCHARGE	(CFS) =	8.7
TIME (MIN)	= 9	9	DISCHARGE	(CFS) =	9.2
TIME (MIN)	= 1	10	DISCHARGE	(CFS) =	9.5
TIME (MIN)	= 1	21	DISCHARGE	(CFS) =	10.2
TIME (MIN)			DISCHARGE		
TIME (MIN)			DISCHARGE	(CFS) =	11.5
TIME (MIN)			DISCHARGE		
TIME (MIN)	= 1	65	DISCHARGE	(CFS) =	13.3
TIME (MIN)		76	DISCHARGE	(CFS) =	14.2
TIME (MIN)	= 1	87	DISCHARGE	(CFS) =	16.2
TIME (MIN)			DISCHARGE	(CFS) =	17.6
TIME (MIN)	= 2	:09	DISCHARGE	(CFS) =	21.5
TIME (MIN)	= 2	20	DISCHARGE	(CFS) =	24.5
TIME (MIN)	= 2	:31	DISCHARGE	(CFS) =	36
TIME (MIN)	= 2		DISCHARGE		
TIME (MIN)	= 2	:53	DISCHARGE	(CFS) =	178.35
TIME (MIN)	= 2	:64	DISCHARGE	(CFS) =	28.8
TIME (MIN)			DISCHARGE	(CFS) =	19.3
TIME (MIN)	= 2		DISCHARGE		
TIME (MIN)		97	DISCHARGE	(CFS) =	12.6
TIME (MIN)	= 3	808	DISCHARGE	(CFS) =	11
TIME (MIN)	= 3	19	DISCHARGE	(CFS) =	9.8
TIME (MIN)	= 3	30	DISCHARGE	(CFS) =	8.9
TIME (MIN)		41	DISCHARGE		
TIME (MIN)	= 3	52	DISCHARGE		
TIME (MIN)			DISCHARGE	(CFS) =	7.1
TIME (MIN)	= 3	74	DISCHARGE	(CFS) =	0

Hydraflow Table of Contents

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2014 by Autodesk, Inc. v10.3

Wednesday, 06 / 22 / 2016

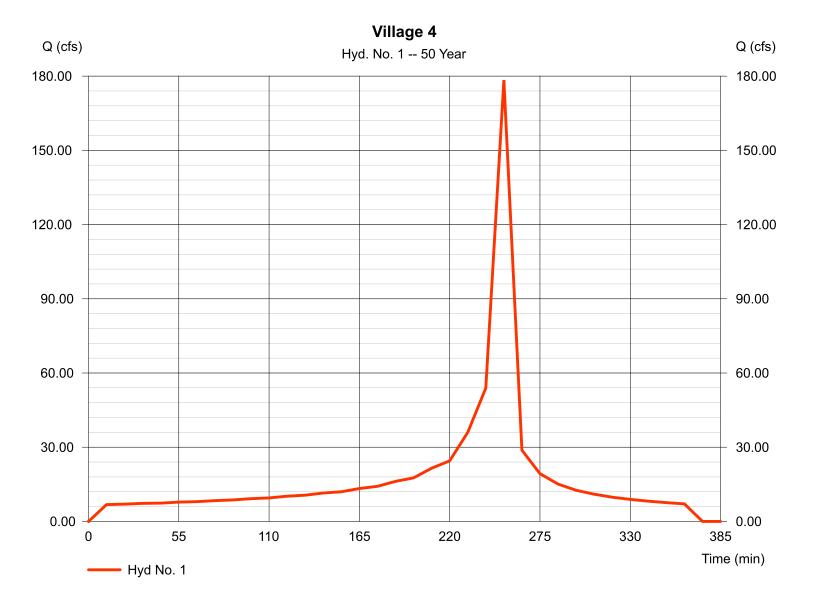
Watershed Model Schematic	1
50 - Year	
Summary Report	
Hydrograph Reports	
Hydrograph No. 1, Manual, Village 4	
Hydrograph No. 2, Reservoir, <no description=""></no>	
Pond Report - BASIN 1	Ę

Hydrograph Summary Report Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2014 by Autodesk, Inc. v10.3

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)		Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	Manual	178.35	11	253	414,711				Village 4
2	Reservoir	83.92	11	264	414,676	1	289.03	256,500	<no description=""></no>
V4 50yr detention 4 x 4 riser.gpw					Return P	eriod: 50 Y	ear	Wednesday	, 06 / 22 / 2016

Hydrograph Report

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2014 by Autodesk, Inc. v10.3


Wednesday, 06 / 22 / 2016

Hyd. No. 1

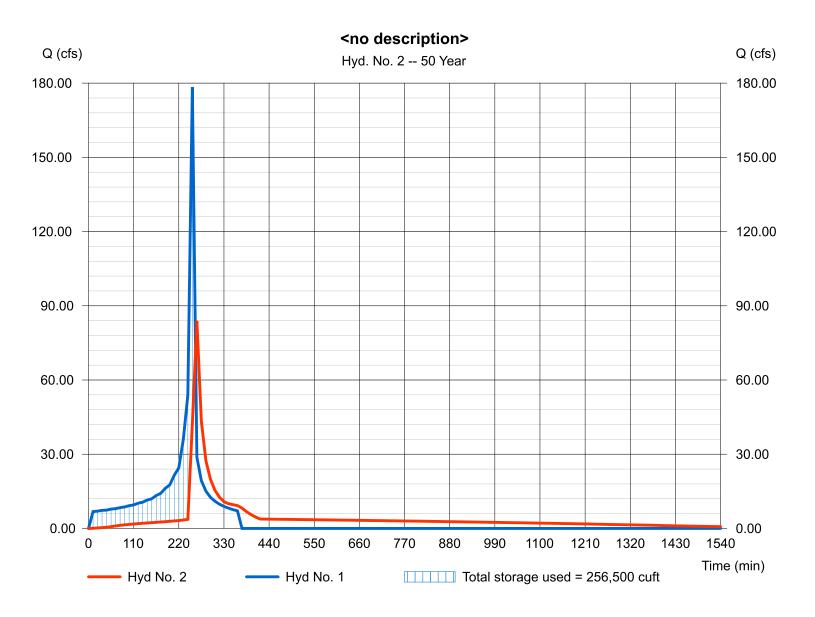
Village 4

Hydrograph type = Manual
Storm frequency = 50 yrs
Time interval = 11 min

Peak discharge = 178.35 cfs Time to peak = 253 min Hyd. volume = 414,711 cuft

Hydrograph Report

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2014 by Autodesk, Inc. v10.3


Wednesday, 06 / 22 / 2016

Hyd. No. 2

<no description>

Hydrograph type = Reservoir Peak discharge = 83.92 cfsStorm frequency = 50 yrsTime to peak = 264 min Time interval = 11 min Hyd. volume = 414,676 cuft Inflow hyd. No. = 1 - Village 4 Max. Elevation = 289.03 ft= 256,500 cuft Reservoir name = BASIN 1 Max. Storage

Storage Indication method used.

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2014 by Autodesk, Inc. v10.3

Wednesday, 06 / 22 / 2016

Pond No. 1 - BASIN 1

Pond Data

Contours -User-defined contour areas. Average end area method used for volume calculation. Begining Elevation = 282.00 ft

Stage / Storage Table

Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)
0.00	282.00	29,865	0	0
0.50	282.50	31,116	15,245	15,245
1.00	283.00	32,381	15,874	31,120
1.50	283.50	33,661	16,511	47,630
2.00	284.00	34,956	17,154	64,784
2.50	284.50	36,265	17,805	82,590
3.00	285.00	37,589	18,464	101,053
3.50	285.50	38,928	19,129	120,182
4.00	286.00	40,282	19,803	139,985
4.50	286.50	41,651	20,483	160,468
5.00	287.00	43,034	21,171	181,639
5.50	287.50	44,432	21,867	203,506
6.00	288.00	45,844	22,569	226,075
6.50	288.50	47,272	23,279	249,354
7.00	289.00	48,715	23,997	273,351
7.50	289.50	50,172	24,722	298,072
8.00	290.00	51,643	25,454	323,526

[B] [C] [PrfRsr] [A] [B] [C] [D] [A] 0.00 Rise (in) = 0.000.00 0.00 Crest Len (ft) = 0.000.00 0.00 0.00 Span (in) = 0.000.00 0.00 0.00 Crest El. (ft) = 0.000.00 0.00 0.00 No. Barrels = 00 0 0 Weir Coeff. = 3.333.33 3.33 3.33 Invert El. (ft) = 0.000.00 0.00 0.00 Weir Type Length (ft) = 0.000.00 0.00 0.00 Multi-Stage No No = No No Slope (%) = 0.000.00 0.00 n/a .013 = .013 .013 N-Value n/a

Orifice Coeff.= 0.600.600.600.60Exfil.(in/hr)= 0.000 (by Contour)Multi-Stage= n/aNoNoTW Elev. (ft)= 0.00

Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s).

Weir Structures

Stage / Storage / Discharge Table

Culvert / Orifice Structures

Stage ft	Storage cuft	Elevation ft	CIv A cfs	Clv B cfs	Clv C cfs	PrfRsr cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Exfil cfs	User cfs	Total cfs
	Cuit		CIS	CIS	CIS	CIS	CIS	CIS	CIS	CIS	CIS	CIS	CIS
0.00	0	282.00											0.000
0.50	15,245	282.50										0.432	0.432
1.00	31,120	283.00										1.338	1.338
1.50	47,630	283.50										1.894	1.894
2.00	64,784	284.00										2.290	2.290
2.50	82,590	284.50										2.615	2.615
3.00	101,053	285.00										2.898	2.898
3.50	120,182	285.50										3.152	3.152
4.00	139,985	286.00										3.384	3.384
4.50	160,468	286.50										3.599	3.599
5.00	181,639	287.00										3.800	3.800
5.50	203,506	287.50										10.19	10.19
6.00	226,075	288.00										36.39	36.39
6.50	249,354	288.50										73.66	73.66
7.00	273,351	289.00										108.12	108.12
7.50	298,072	289.50										122.15	122.15
8.00	323,526	290.00										134.70	134.70

100 YEAR DETENTION

RATIONAL METHOD HYDROGRAPH PROGRAM COPYRIGHT 1992, 2001 RICK ENGINEERING COMPANY

RUN DATE 6/22/2016
HYDROGRAPH FILE NAME Text1
TIME OF CONCENTRATION 11 MIN.
6 HOUR RAINFALL 2.35 INCHES
BASIN AREA 68.98 ACRES
RUNOFF COEFFICIENT 0.78
PEAK DISCHARGE 198.05 CFS

TIME (MIN)	= 0 = 11	DISCHARGE	(CFS) =	0
		DISCHARGE		
TIME (MIN)	= 22	DISCHARGE	(CFS) =	7.7
TIME (MIN)	= 33	DISCHARGE		
TIME (MIN)	= 44	DISCHARGE	(CFS) =	8.2
TIME (MIN)		DISCHARGE		
TIME (MIN)	= 66	DISCHARGE		
TIME (MIN)	= 77	DISCHARGE	(CFS) =	9.3
TIME (MIN)	= 88	DISCHARGE	(CFS) =	9.5
TIME (MIN)	= 99	DISCHARGE	(CFS) =	10.1
TIME (MIN)	= 110	DISCHARGE	(CFS) =	10.5
TIME (MIN)	= 121	DISCHARGE	(CFS) =	11.2
TIME (MIN)		DISCHARGE	(CFS) =	11.7
TIME (MIN)		DISCHARGE	(CFS) =	12.7
TIME (MIN)	= 154	DISCHARGE	(CFS) =	13.3
	= 165	DISCHARGE		
TIME (MIN)	= 176	DISCHARGE	(CFS) =	15.6
TIME (MIN)		DISCHARGE		
TIME (MIN)	= 198	DISCHARGE	(CFS) =	19.4
TIME (MIN)	= 209	DISCHARGE	(CFS) =	23.7
TIME (MIN)	= 220	DISCHARGE	(CFS) =	27
TIME (MIN)		DISCHARGE	(CFS) =	39.7
TIME (MIN)	= 242	DISCHARGE		
TIME (MIN)	= 253	DISCHARGE	(CFS) =	198.05
TIME (MIN)	= 264	DISCHARGE	(CFS) =	31.8
TIME (MIN)	= 275	DISCHARGE	(CFS) =	21.3
TIME (MIN)	= 286	DISCHARGE	(CFS) =	16.7
	= 297	DISCHARGE		
TIME (MIN)	= 308	DISCHARGE	(CFS) =	12.1
TIME (MIN)	= 319	DISCHARGE	(CFS) =	10.8
TIME (MIN)	= 330	DISCHARGE	(CFS) =	9.8
TIME (MIN)	= 341	DISCHARGE	(CFS) =	9
TIME (MIN)	= 352	DISCHARGE		
TIME (MIN)	= 363	DISCHARGE		
TIME (MIN)	= 374	DISCHARGE	(CFS) =	0

Hydraflow Table of Contents

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2014 by Autodesk, Inc. v10.3

Wednesday, 06 / 22 / 2016

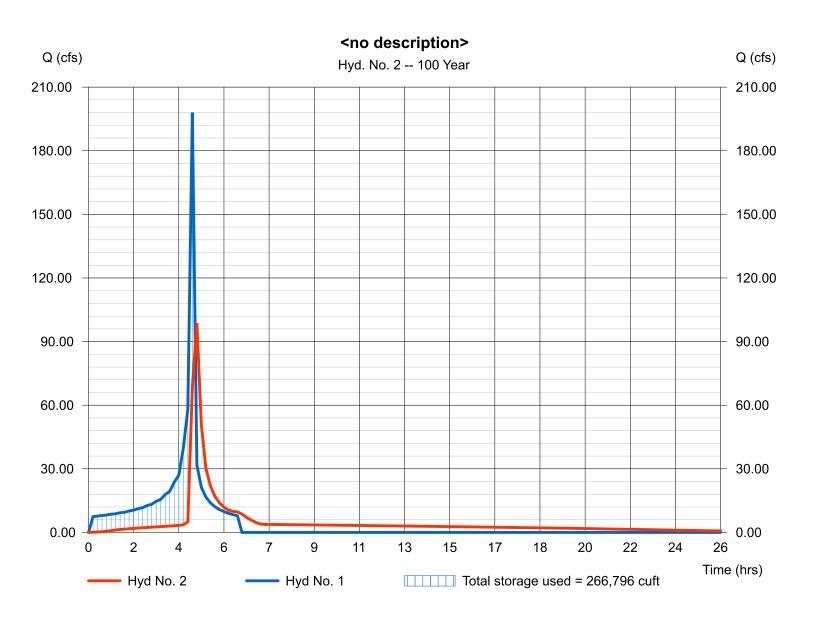
Watershed Model Schematic	, 1
100 - Year	
Summary Report	2
Hydrograph Reports	3
Hydrograph No. 2, Reservoir, <no description=""></no>	3
Pond Report - BASIN 1	

Hydrograph Summary Report Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2014 by Autodesk, Inc. v10.3

							, a. og. ap. 10 = 110.		
Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	Manual	198.05	11	253	457,413				Village 4
2	Reservoir	98.71	11	264	457,378	1	289.31	266,796	<no description=""></no>
V4	100yr detent	ion 4 x 4 r	iser.gpw	,	Return F	eriod: 100	Year	Wednesday	/, 06 / 22 / 2016

Hydrograph Report

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2014 by Autodesk, Inc. v10.3


Wednesday, 06 / 22 / 2016

Hyd. No. 2

<no description>

Hydrograph type = Reservoir Peak discharge = 98.71 cfsStorm frequency = 100 yrsTime to peak = 4.40 hrsTime interval = 11 min Hyd. volume = 457,378 cuft Inflow hyd. No. = 1 - Village 4 Max. Elevation $= 289.31 \, \text{ft}$ = 266,796 cuft Reservoir name = BASIN 1 Max. Storage

Storage Indication method used.

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2014 by Autodesk, Inc. v10.3 $\,$

Wednesday, 06 / 22 / 2016

Pond No. 1 - BASIN 1

Pond Data

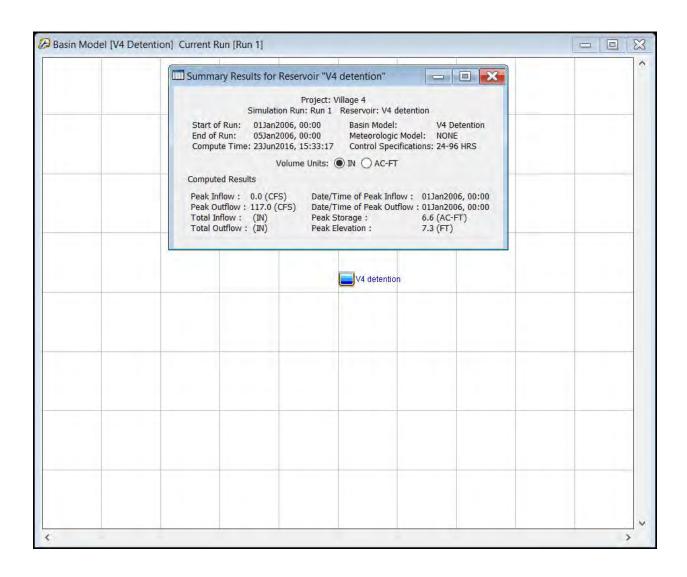
Contours -User-defined contour areas. Average end area method used for volume calculation. Begining Elevation = 282.00 ft

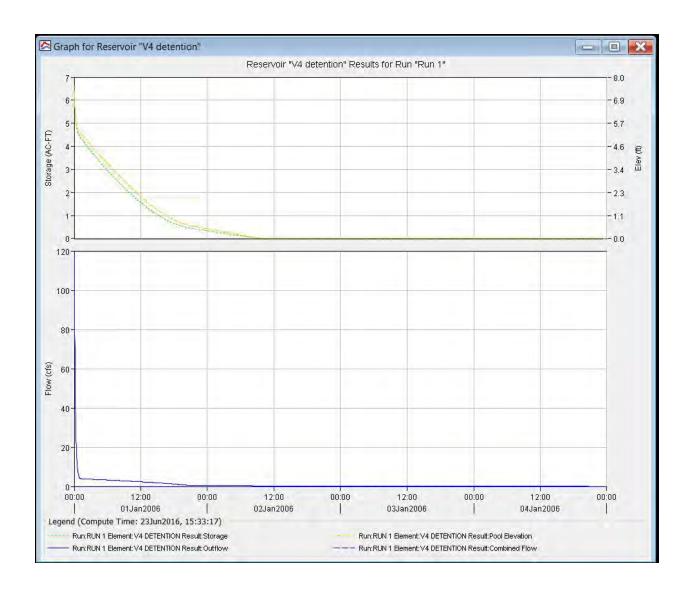
Stage / Storage Table

Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)
0.00	282.00	29,865	0	0
0.50	282.50	31,116	15,245	15,245
1.00	283.00	32,381	15,874	31,120
1.50	283.50	33,661	16,511	47,630
2.00	284.00	34,956	17,154	64,784
2.50	284.50	36,265	17,805	82,590
3.00	285.00	37,589	18,464	101,053
3.50	285.50	38,928	19,129	120,182
4.00	286.00	40,282	19,803	139,985
4.50	286.50	41,651	20,483	160,468
5.00	287.00	43,034	21,171	181,639
5.50	287.50	44,432	21,867	203,506
6.00	288.00	45,844	22,569	226,075
6.50	288.50	47,272	23,279	249,354
7.00	289.00	48,715	23,997	273,351
7.50	289.50	50,172	24,722	298,072
8.00	290.00	51,643	25,454	323,526

Culvert / Orifice Structures

		•		
١Λ	lair	Stri	ICT.	ires

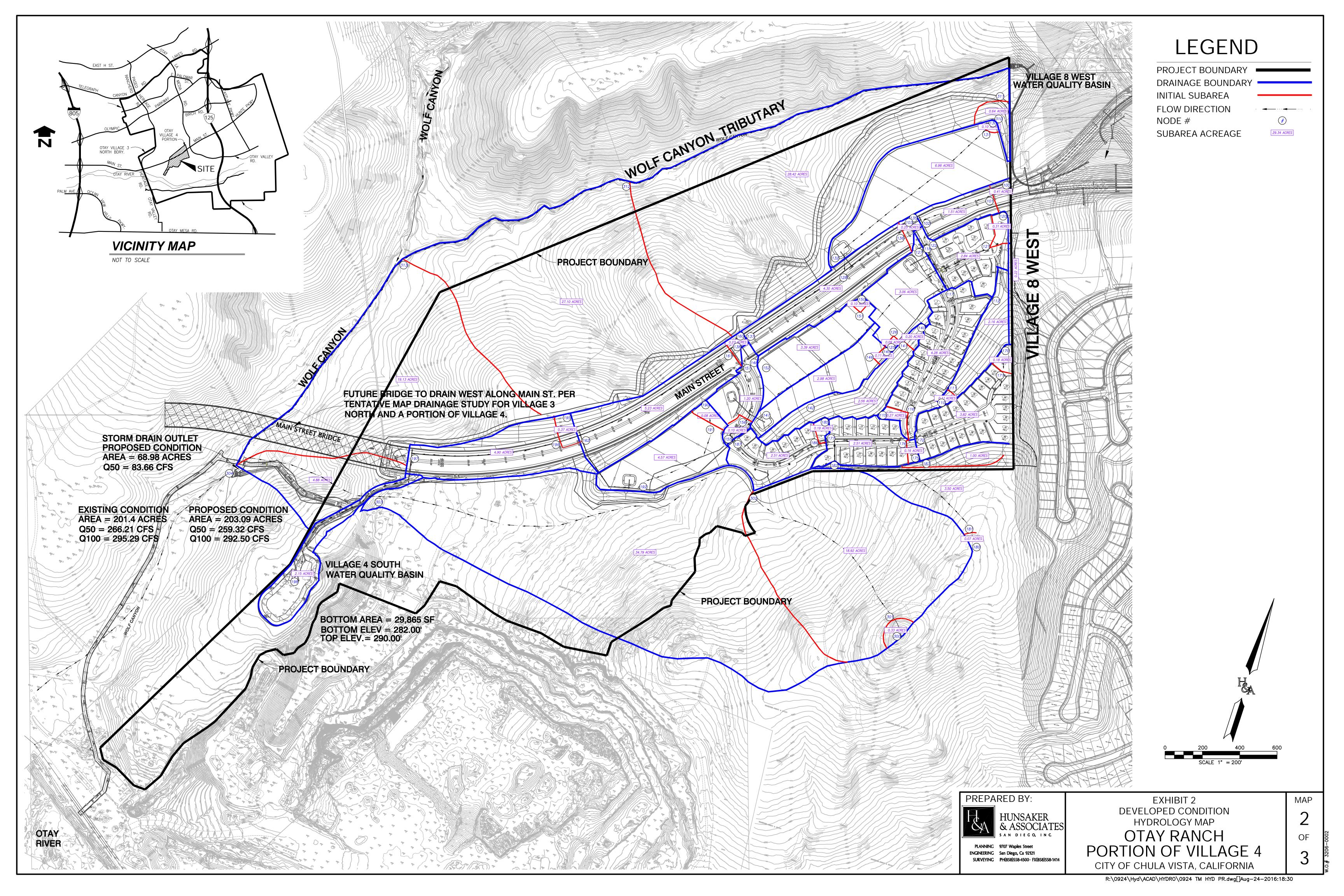

	[A]	[B]	[C]	[PrfRsr]		[A]	[B]	[C]	[D]
Rise (in)	= 0.00	0.00	0.00	0.00	Crest Len (ft)	= 0.00	0.00	0.00	0.00
Span (in)	= 0.00	0.00	0.00	0.00	Crest El. (ft)	= 0.00	0.00	0.00	0.00
No. Barrels	= 0	0	0	0	Weir Coeff.	= 3.33	3.33	3.33	3.33
Invert El. (ft)	= 0.00	0.00	0.00	0.00	Weir Type	=			
Length (ft)	= 0.00	0.00	0.00	0.00	Multi-Stage	= No	No	No	No
Slope (%)	= 0.00	0.00	0.00	n/a					
N-Value	= .013	.013	.013	n/a					
Orifice Coeff.	= 0.60	0.60	0.60	0.60	Exfil.(in/hr)	= 0.000 (by Contour)			
Multi-Stage	= n/a	No	No	No	TW Elev. (ft)	= 0.00			


Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s).

Stage / Storage / Discharge Table

Stage ft	Storage cuft	Elevation ft	CIv A cfs	CIv B cfs	Clv C cfs	PrfRsr cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Exfil cfs	User cfs	Total cfs
••	• • • • • • • • • • • • • • • • • • • •		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.00	0	282.00											0.000
0.50	15,245	282.50										0.432	0.432
1.00	31,120	283.00										1.338	1.338
1.50	47,630	283.50										1.894	1.894
2.00	64,784	284.00										2.290	2.290
2.50	82,590	284.50										2.615	2.615
3.00	101,053	285.00										2.898	2.898
3.50	120,182	285.50										3.152	3.152
4.00	139,985	286.00										3.384	3.384
4.50	160,468	286.50										3.599	3.599
5.00	181,639	287.00										3.800	3.800
5.50	203,506	287.50										10.19	10.19
6.00	226,075	288.00										36.39	36.39
6.50	249,354	288.50										73.66	73.66
7.00	273,351	289.00										108.12	108.12
7.50	298,072	289.50										122.15	122.15
8.00	323,526	290.00										134.70	134.70

BASIN DRAWDOWN CALCULTIONS


CHAPTER 5

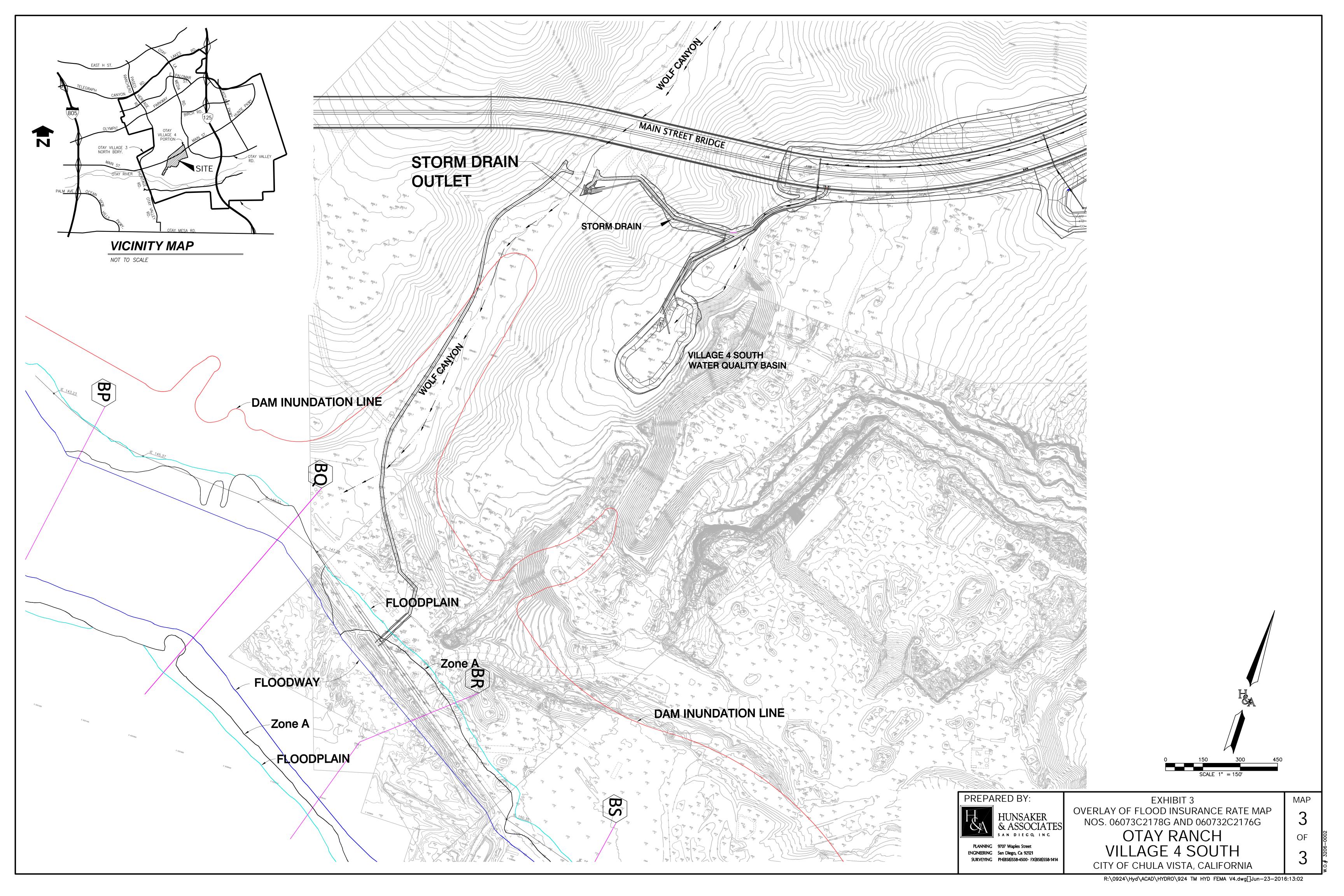

EXHIBIT 1 PRE-DEVELOPED CONDITION HYDROLOGY MAP

EXHIBIT 2 DEVELOPED CONDITION HYDROLOGY MAP

EXHIBIT 3
OVERLAY OF FLOOD INSURANCE RATE MAP

